梯度降级算法简介 之前如果需要求出最佳的线性回归模型,就需要求出代价函数的最小值.在上一篇文章中,求解的问题比较简单,只有一个简单的参数.梯度降级算法就可以用来求出代价函数最小值. 梯度降级算法的在维基的定义: 梯度下降法是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索 首先,复习一下之前前面的讲过求解最佳的代价函数的过程 那么如何通过梯度降级算法解决这个问题呢?首先对θ0和θ…
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ ) 回想…
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差.之后再平方乘以1/2,而且当中 注意到x能够一维变量.也能够是多维变量,实际上最经常使用的还是多维变量. 我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候.应该是沿着梯度的反方向进行权重的更新.能够有效的找到全局的最优解. 这个θ的更新过…
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权…
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,…
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权…
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这类 我们的目标是求出θ,使得这个代价函数J(θ)的值最…
排版也是醉了见原文:http://www.cnblogs.com/maybe2030/p/5089753.html 在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练.其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点. 下面我们以线性回归算法来对三种梯度下降法进行比较. 1. 批量梯度下降法BGD 批量梯度下降法(Batch Gradient Descent,简称BGD)是梯度下降法最原始的形式,它的具体思路是在更新每一参数时都使用所有的样本来进行更新…
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小.另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化. #sklearn中实现随机梯度下降多元线性回归 #1-1导入相应的数据模块import numpy as npimport matplotlib.…
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ(x(i))-y(i) ) ] * xi .经过查找资料才知道,书中省去了大量的理论推导过程,其中用到了线性函数.sigmoid 函数.偏导数.最大似然函数.梯度下降法.下面让我们一窥究竟,是站在大神的肩膀描述我自己的见解. 1.2 Logistic 回归的引入 Logistic 回归是概率非线性模型…