Combiner-Reduce之前处理过程】的更多相关文章

TaskTracker执行map或reduce任务的过程(二) 上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的LinkedList也即队列中获取到TaskInProgress,并且TaskTracker有空闲的slot时,该线程就调用了TaskTracker的startNewTask(tip)方法,如下所示: public void run() { while (!Thread.interrupted())…
TaskTracker获取并执行map或reduce任务的过程(一) 我们知道TaskTracker在默认情况下,每个3秒就行JobTracker发送一个心跳包,也就是在这个心跳包中包含对任务的请求.JobTracker返回给TaskTracker的心跳包中包含有各种action(任务),如果有满足在此TaskTracker上执行的任务的话,该任务也就包含在心跳包的响应中.在TaskTracker端有线程专门等待map或reduce任务,并从队列中取出执行. 1. TaskTracker发送心跳…
一.Hadoop环境配置概述 三台虚拟机,操作系统为:Ubuntu 16.04. Hadoop版本:2.7.2 NameNode:192.168.72.132 DataNode:192.168.72.135,192.168.72.136 注:具配置过程,不具备介绍了,网上很多. 二.eclipse(JAVA)环境配置概述 操作系统:Windows 10 eclipse版本:Mars.2 Release (4.5.2) 1.hadoop-eclipse-plugin-2.7.2.jar组件放plu…
目录 函数进阶三 1. 匿名函数 1. 什么是匿名函数 2. 匿名函数的语法 3. 能和匿名函数联用的一些方法 2. python解释器内置方法 3. 异常处理 面向过程编程 函数进阶三 1. 匿名函数 1. 什么是匿名函数 匿名函数就是没有名字的函数,没法调用,他只能和某些方法联合起来使用 2. 匿名函数的语法 lambda 参数:返回值 #也可以通过赋值,让它变为有名函数 f = lambda x,y:x+y res = f(1,2) print(res) 3. 能和匿名函数联用的一些方法…
上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的LinkedList也即队列中获取到TaskInProgress,并且TaskTracker有空闲的slot时,该线程就调用了TaskTracker的startNewTask(tip)方法,如下所示: public void run() { while (!Thread.interrupted()) { try { TaskInProgress tip; Tas…
我们知道TaskTracker在默认情况下,每个3秒就行JobTracker发送一个心跳包,也就是在这个心跳包中包含对任务的请求.JobTracker返回给TaskTracker的心跳包中包含有各种action(任务),如果有满足在此TaskTracker上执行的任务的话,该任务也就包含在心跳包的响应中.在TaskTracker端有线程专门等待map或reduce任务,并从队列中取出执行. 1. TaskTracker发送心跳包 TaskTracker是作为一个单独的JVM运行的,它启动以后一直…
Shuffle的本意是洗牌.混乱的意思,类似于java中的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.MapReduce中的Shuffle过程.所谓Shuffle过程可以大致的理解成:怎样把map task的输出结果有效地传送到reduce输入端.也可以这样理解, Shuffle描述着数据从map task输出到reduce task输入的这段过程.  上图表示的是Shuffle的整个过程.在Hadoop这样的集群环境中,大部分map task…
map过程已经写完了,上面那个流程我们涉及到了泛型以及序列化,我们要知道每个参数代表的含义,这样有助于我们理解整个流程. 下面我们开始reduce,这个过程我们要把map输出的键值对把key值相同的放在一起,具体的流程我们看代码: package MR.wc;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;impo…
在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child类中的Main方法,这个方法是如何执行的. 1,从命令参数中解析相应参数,获取JVMID.建立RPC连接.启动日志线程等初始化操作: 父进程(即TaskTracker)在启动子进程时,会加入一些参数,如本机的IP.端口.TaskAttemptID等等,通过解析可以得到JVMID. String ho…
/** * author : 冶秀刚 * mail     : dennyy99@gmail.com */ Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所…
Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阀值,则写到磁盘上,否则直接放到内存中. 官方的Shuffle过程如上图所示,不过细节有错乱,官方图并没有说明partition.sort和combiner具体作用于哪个阶段. 注意:Shuffle过程是贯穿于map和reduce两个过程的! Hadoop的集群环境,大部分的map task和reduce task是执行在不同的节点上的,那么reduce就要…
网址:http://www.cnblogs.com/felixzh/p/4680808.html Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阀值,则写到磁盘上,否则直接放到内存中. 官方的Shuffle过程如上图所示,不过细节有错乱,官方图并没有说明partition.sort和combiner具体作用于哪个阶段. 注意:Shuffle过程是贯穿于map和reduce两个过程的! Hadoop的集群…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有…
Shuffle描述着数据从map task输出到reduce task输入的这段过程(Shuffle的正常意思是洗牌或弄乱). 以下是官网的流程图: 从最基本的要求来说,我们对Shuffle过程的期望可以有: 完整地从map task端拉取数据到reduce 端. 在跨节点拉取数据时,尽可能地减少对带宽的不必要消耗. 减少磁盘IO对task执行的影响. 能优化性能的地方主要在于减少拉取数据的量及尽量使用内存而不是磁盘. 一.shuffle在map环节的流程 注意partition, sort与c…
今天在写一个MR的时候,用到了combiner.在使用过程中,遇到了一些问题,特此记录一下. Combiner分为两种,一种是可插拔的,一种是不可插拔的. 可插拔的:Combiner和Reduce的处理逻辑是一样的,可以直接使用Reduce类进行处理.如果去掉Combiner,不影响结果. 不可插拔:Combiner和Reduce的处理逻辑不一样,如果去掉Combiner,会影响结果. 在使用不可插拔的Combiner过程中需要注意的是,其输出的key和value要和Map输出的key和valu…
转自:http://langyu.iteye.com/blog/992916,多谢分享,学习Hadopp性能调优的可以多关注一下 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方,Shuffle的正常意思是洗牌或弄乱,可能大家更熟悉的是Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里Shuffle是什么,那么请看这张图: 这张是官方对Shuffle过程的描述.但我可以肯定的是,…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException { //首先生成一个JobClient对象 JobClient jc = new JobClient(job); …… //调用submitJob来提交一个任务 running = jc.submitJob(jo…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有…
1. 从输入到输出 一个MapReducer作业经过了input,map,combine,reduce,output五个阶段,其中combine阶段并不一定发生,map输出的中间结果被分到reduce的过程成为shuffle(数据清洗). 在shuffle阶段还会发生copy(复制)和sort(排序). 在MapReduce的过程中,一个作业被分成Map和Reducer两个计算阶段,它们由一个或者多个Map任务和Reduce任务组成.如下图所示,一个MapReduce作业从数据的流向可以分为Ma…
——转自:{http://langyu.iteye.com/blog/992916} Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能…
Hadoop计算中的Shuffle过程 作者:左坚 来源:清华万博 时间:2013-07-02 15:04:44.0 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce,Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼…
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…
http://langyu.iteye.com/blog/992916 shuffle本意是洗牌的意思.在mapreduce中描述的是怎么将map task 的输出结果有效的传送到reduce task端. 在Hadoop这样的集群环境中,大部分map task与reduce task的执行是在不同的节点上.当然很多情况下Reduce执行时需要跨节点去拉取其它节点上的map task结果.如果集群正在运行的job有很多,那么task的正常执行对集群内部的网络资源消耗会很严重.这种网络消耗是正常的…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException {   //首先生成一个JobClient对象 JobClient jc = new JobClient(job); ……   //调用submitJob来提交一个任务 running = jc.submitJo…
一.客户端 Map-Reduce的过程首先是由客户端提交一个任务开始的. 提交任务主要是通过JobClient.runJob(JobConf)静态函数实现的: public static RunningJob runJob(JobConf job) throws IOException {   //首先生成一个JobClient对象 JobClient jc = new JobClient(job); ……   //调用submitJob来提交一个任务 running = jc.submitJo…
原文地址:http://langyu.iteye.com/blog/992916 另一篇博文:http://www.cnblogs.com/gwgyk/p/3997849.html Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的. Shuffle是洗牌的意思,Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里Shuff…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必需要了解的.我看过非常多相关的资料,但每次看完都云里雾里的绕着,非常难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的执行机制,这才对Shuffle探了个到底. 考虑到之前我在看相关资料而看不懂时非常恼火.所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.假设你对这…
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有…
[源码解析] Flink的groupBy和reduce究竟做了什么 目录 [源码解析] Flink的groupBy和reduce究竟做了什么 0x00 摘要 0x01 问题和概括 1.1 问题 1.2 概括 0x02 背景概念 2.1 MapReduce细分 2.2 MapReduce细分 2.3 Combine 2.4 Partition 2.5 Shuffle 2.6 Reducer 0x03 代码 0x04 从Flink JAVA API入手挖掘 4.1 GroupBy是个辅助概念 4.1…