浅谈MapReduce工作机制】的更多相关文章

1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRecordReader)按行读取内容给map(用户自己实现的map方法),进行处理,数据被map处理结束之后交给OutputCollector收集器,对其结果key进行分区(默认使用hash分区),然后写入buffer,每个map task 都有一个内存缓冲区,存储着map的输出结果,当缓冲区快满的时候…
浅谈React工作原理:https://www.cnblogs.com/yikuu/p/9660932.html 转自:https://cloud.tencent.com/info/63f656e0ba879ad59cb5fdba96716601.html Reactjs 起源于Facebook内部项目,是一个用来构建用户界面的 javascript 库,相当于MVC架构中的V层框架,与市面上其他框架不同的是,React 把每一个组件当成了一个状态机,组件内部通过state来维护组件状态的变化,…
摸索了将近一个月的hadoop , 在centos上配了一个伪分布式的环境,又折腾了一把hadoop eclipse plugin,最后终于实现了在windows上编写MapReduce程序,在centos上可以执行. 关于环境的配置,网上很多,不再废话. 仅以此系列的博客记录学习过程中的点点滴滴. ##############################传说中的分割线##################### 学习了WordCount程序,也照着网上的某些文章,实现了一些简单的MapRed…
MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对,处理后,产生新的键值对作为中间结果输出.接着,MapReduce框架自动将中间结果按键做聚合处理,发给reduce函数处理.最后,reduce函数以键和对应的值的集合作为输入,处理后,产生另一系列键值对作为最终输出.后面会结合实例介绍整个过程. 运行环境 先不考虑采用YARN的情况,那个时候Map…
1,为什么需要hadoop 数据分析者面临的问题 数据日趋庞大,读写都出现性能瓶颈: 用户的应用和分析结果,对实时性和响应时间要求越来越高: 使用的模型越来越复杂,计算量指数级上升. 期待的解决方案 解决性能瓶颈,在可见的未来不会出现新瓶颈之前的技术可以平稳过渡,如SQL: 转移成本,如软硬件成本,开发成本,技能培养成本,维护成本 2,关系型数据库和MapReduce的比较: 传统关系型数据库 MapReduce 数据大小 GB PB 访问 交互式和批处理 批处理 更新 多次读写 一次写入多次读…
目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试ReduceTask多少合适 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 Read阶段 主要是Job的提交流程 1.切片划分 2.提交给Yarn Job.split 切片信息 wc.jar 集群模式会提交,本地模式不会提交 Job.xml 配置信息 3.Yarn开启Node…
尽管我们在虚拟机client上能非常快通过shell命令,进行运行一些已经封装好实例程序,可是在应用中还是是自己敲代码,然后部署到server中去,以下,我通过程序进行浅谈一个程序的部署过程. 在启动Hadoop之后,然后把程序达成可运行的jar包,并把对应的第三方jar包 包括进去.运行hadoop    jar   XXX. +驱动名称. package com.mapred; import java.io.IOException; import java.io.PrintStream; i…
在之前有说过线程,应该都知道,所谓线程就是进程中的一个子任务,一个进程有多个线程.今天的话主要就是谈一谈JVM线程调度机制.我们结合线程来说,当我们在做多线程的案例时,如一个经典案例,火车站卖票. * 下面附上代码: /** * 需求:一个简单卖票程序 多个窗口卖票 * @ClassName:ThreadDemo3 * @author lxd * @date 2018年11月1日 * @version */ public class ThreadDemo3 implements Runnable…
P205 MapReduce的两种运行机制 第一种:经典的MR运行机制 - MR 1 可以通过一个简单的方法调用来运行MR作业:Job对象上的submit().也可以调用waitForCompletion(),用于提交以前没有提交的作业,并等待其完成. Hadoop执行MR的方法依赖于两个配置设置 mapred.job.tracker - 决定执行MR程序的方式 如果设置为local默认值,表示使用本地的作业运行器,在单个JVM上运行整个作业,用于小数据集测试 如果设置为主机端口对,那么被解释为…
一. 认识NSRunloop  1.1 NSRunloop与程序运行 那么具体什么是NSRunLoop呢?其实NSRunLoop的本质是一个消息机制的处理模式.让我们首先来看一下程序的入口——main.m文件,一个ios程序启动后,只有短短的十行代码居然能保持整个应用程序一直运行而没有退出,是不是有点意思?程序之所以没有直接退出是因为UIApplicationMain这个函数内部默认启动了一个跟主线程相关的NSRunloop对象,而UIApplicationMain这个函数一直执行没有返回就保存…