洛谷P2520向量】的更多相关文章

题目传送门 看到数据范围其实就可以确定这是一道结论题. 首先分析,给定你的向量的两个坐标a,b有八种组合方式可以用,但实际上整理一下可以得出实际上只有五种,x/y ±2a,x/y ±2b,x+a,y+b,x+b,y+a,再就是什么都不做(废话...) 那么要想用a,b组合出x,y,那必须满足一下条件: 令A=2a,B=2b,d=gcd(A,B),存在i*a+j*b=x,u*a+v*b=y,并且d|x,d|y. (根据裴蜀定理{若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by…
什么毒瘤...... 题意:给定n个d维向量,定义向量a和b的内积为 求是否存在两个向量使得它们的内积为k的倍数,并给出任一种方案.k <= 3. 解:很容易想到一个暴力是n2d的.显然我们不能n2枚举,所以要一次性把一个向量跟多个向量判断. 先思考k = 2的情况,显然每个位置和内积非0即1,这启发我们使用二进制. 假如把一个内积看成一个B进制数或者一个多项式,变量是B,我们就能发现,如果两个向量的内积为x,那么这个多项式的值也是x. 这种情况只要B取一个奇数就行了.理由是内积每一项非0即1,…
洛谷题面传送门 一道很神的随机化. 首先由于我们要求向量点乘 \(\bmod k\) 的值,因此我们可以将所有 \(x_{i,j}\) 都模上 \(k\),显然该操作不影响结果正确性. 注意到这里的 \(d\) 与 \(n\) 不同阶,这也就暗示我们要找到一个复杂度重心偏向 \(d\) 的算法,首先考虑 \(k=2\) 的情形,我们考虑依次枚举所有向量并维护它们的前缀和 \(\vec{S}\),对于每个向量 \(\vec{x_i}\) 我们求出 \(\vec{S}·\vec{x_i}\bmod…
洛谷题目传送门 设抛物线方程为\(y=ax^2+bx(a<0,b>0)\),我们想要求出一组\(a,b\)使得它尽可能满足更多的要求.这个显然可以二分答案. 如何check当前的\(mid\)是否合法呢?每一个限制条件形如\(y_{i_1}\le ax_i^2+bx_i\le y_{i_2}\),也就是\(\frac{y_{i_1}}{x_i}\le x_ia+b\le \frac{y_{i_2}}{x_i}\).把\(a,b\)看成自变量,实际上每个不等式就是一个半平面,我们需要求出半平面交…
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_…
题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方轮廓折线\((x_1,y_1),(x_2,y_2)-(x_n,y_n)\)来描述H村的形状,这里\(x_1 < x_2 < -< x_n\).瞭望塔可以建造在\([x_1,x_n]\)间的任意位置,但必须满足从瞭望塔的顶端可以看到H村的任意位置.可见在不同的位置建造瞭望塔,所需要建造的高度是…
bzoj3564 洛谷P4288 可以旋转一下坐标轴使得x轴与长轴方向对齐,然后将所有的横坐标变为自身除以放大倍数,然后就做一个最小圆覆盖 #include<cstdio> #include<algorithm> #include<cstring> #include<vector> #include<cmath> #include<ctime> using namespace std; #define fi first #define…
bzoj1337 洛谷P1742 用随机增量法.讲解:https://blog.csdn.net/jokerwyt/article/details/79221345 设点集A的最小覆盖圆为g(A) 可以发现:1.g(A)是唯一的2.g(A)可以由<=3个点唯一确定①由一个点确定(所有点重合时)②由两个点确定(圆直径必定为两点连线)③由三个点确定(圆必定是过三点的唯一圆) 把A中在g(A)上的点叫做关键点可以发现:若点b不在g(A)内(b不属于A),则b是g(A+b)的关键点证明:如果b不是g(A…
传送门 1.铺地毯 d1t1 模拟 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<queue> #include<vector> #include<ctime> typedef long long…
题解:洛谷P1357 花园 Description 小 L 有一座环形花园,沿花园的顺时针方向,他把各个花圃编号为 \(1∼n\).花园 \(1\) 和 \(n\) 是相邻的. 他的环形花园每天都会换一个新花样,但他的花园都不外乎一个规则:任意相邻 \(m\) 个花圃中都只有不超过 \(k\) 个 C 形的花圃,其余花圃均为 P 形的花圃. 例如,若 \(n=10 , m=5 , k=3\) ,则 · CCPCPPPPCC 是一种不符合规则的花圃. · CCPPPPCPCP 是一种符合规则的花圃…