VINS(二)Feature Detection and Tracking】的更多相关文章

系统入口是feature_tracker_node.cpp文件中的main函数 1. 首先创建feature_tracker节点,从配置文件中读取信息(parameters.cpp),包括: ROS中发布订阅的话题名称: 图像尺寸: 特征跟踪参数: 是否需要加上鱼眼mask来去除边缘噪点: %YAML:1.0 #common parameters imu_topic: "/imu0" image_topic: "/cam0/image_raw" #camera ca…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 21. Scale Space尺度空间滤波在现代不变特征中是一个非常重要的概念,有人说SIFT的提出者Lowe是不变特征之父,而Linderburg是不变特征之母.虽然尺度空间滤波是Wi…
翻译 一项关于视觉特征检测的最新进展概述(作者已被接受的手稿) 和A survey of recent advances in visual feature detection——2014.08内容相同,文章布局和图表更清晰 手稿更清楚!!! 更正: 表一:…
论文信息 论文标题:CGC: Contrastive Graph Clustering for Community Detection and Tracking论文作者:Namyong Park, Ryan Rossi, Eunyee Koh, Iftikhar Ahamath Burhanuddin, Sungchul Kim, Fan Du, Nesreen Ahmed, Christos Faloutsos论文来源:2022, AAAI论文地址:download 论文代码:download…
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang Kaihua团队在ECCV 2014上发表的STC tracker:Fast Visual Tracking via Dense Spatio-Temporal Context Learning.相信做跟踪的人对他们团队应该是比较熟悉的了,如Compressive Tracking就是他们的杰作之一…
概要 JiFeng老师CVPR2019的另一篇大作,真正地把检测和跟踪做到了一起,之前的一篇大作FGFA首次构建了一个非常干净的视频目标检测框架,但是没有实现帧间box的关联,也就是说没有实现跟踪.而多目标跟踪问题一般需要一个off-the-shelf的检测器先去逐帧检测,然后再将各帧的detection进行associate,检测与跟踪是一个"晚融合"的过程,检测是为了跟踪,跟踪却不能反哺检测.这篇文章结构非常干净,就连笔者这样对跟踪基本小白的水平也能无压力看懂.更可贵的是,这篇文章…
原文地址:http://onlinelibrary.wiley.com/doi/10.1002/asi.23134/abstract 黄色背景是我认为比较重要的,红色字体是我自己的话. 动态主题监测与跟踪:HDP.共词与共引分析方法的比较 Introduction 主题监测与跟踪在文献计量学.数据挖掘以及其他多个领域中都发挥重要作用.主题监测旨在从文档集合中识别重要主题,而主题跟踪旨在对一个已经识别到的主题演化过程进行跟踪.识别主题及其内在模式对于理解主题来说至关重要. 共引分析和共词分析是文献…
翻译 一项关于视觉特征检测的最新进展概述——http://tongtianta.site/paper/56761 摘要 -特征检测是计算机视觉和图像处理中的基础和重要问题.这是一个低级处理步骤,它是基于计算机视觉的应用程序的基本部分.本文的目的是介绍一项关于视觉特征检测的最新进展和进展的调查.首先,我们从心理学角度描述边缘,角点和斑点之间的关系.其次,我们将检测边缘,角点和斑点的算法分类为不同的类别,并提供每个类别中代表性近期算法的详细描述.考虑到机器学习更多地涉及视觉特征检测,我们更加强调基于…
FAST特征点: http://blog.csdn.net/hujingshuang/article/details/46898007 BRIEF特征描述子: http://blog.csdn.net/hujingshuang/article/details/46910259 ORB: ORB是一种结合FAST和BRIEF,并引入旋转不变性的一种特征点和描述子. http://blog.csdn.net/hujingshuang/article/details/46984411 http://d…
http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/…
和单目纯视觉的初始化只需要获取R,t和feature的深度不同,VIO的初始化话通常需要标定出所有的关键参数,包括速度,重力方向,feature深度,以及相机IMU外参$R_{c}^{b}$和$p_{c}^{b}$. 一. 外参旋转矩阵初始化 在Feature Detection and Tracking模块中,利用Harris特征点匹配通过基础矩阵和Ransac恢复出$R_{Ck+1}^{Ck}$: 相应的使用IMU陀螺仪数据积分得到$R_{bk+1}^{bk}$: 这两个测量满足: $R_{…
VINS-Mono和VINS-Mobile是香港科技大学沈劭劼团队开源的单目视觉惯导SLAM方案.是基于优化和滑动窗口的VIO,使用IMU预积分构建紧耦合框架.并且具备自动初始化,在线外参标定,重定位,闭环检测,以及全局位姿图优化功能. 方案最大的贡献是构建了效果很好的融合算法,视觉闭环等模块倒是使用了较为常见的算法. 系列博客将结合课题组发表的paper,从代码层面,逐步剖析系统的各个模块,达到对单目VIO整体的把握,帮助自己理解各类算法,并开发出针对应用场景的视觉惯导SLAM系统.最终目标是…
http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at you…
From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html Source Code Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them a…
In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a graduate student the job of “solving” computer vision as a summer project. It has occupied an entire community of academic researchers for the past 4…
CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072659    http://blog.csdn.net/ben_ben_niao/article/details/52078727 做了一段时间的跟踪,最近CVPR大会也过了一段时间了,这次将CVPR2016跟踪的文章做一次总结,主要是对paper的方法,创新,改进等方面进行介绍和总结.具体的实现细…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1. <Efficient Visual Event Detection using Volumetric Features> ICCV 2005 扩展2D box 特征到3D时空特征. 构建一个实时的检测器基于容积特征. 采用传统的兴趣点方法检测事件. 2. <ARMA-HMM: A New…
源地址:http://www.learnopencv.com/facial-landmark-detection/#comment-2471797375 OCTOBER 18, 2015 BY SATYA MALLICK 51 COMMENTS Facial landmark detection using Dlib (left) and CLM-framework (right). Who sees the human face correctly: the photographer, the…
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异常种类非常多,千奇百怪.直白地说:正常的情况大同小异,而异常各不相同.这种情况用有限的正例样本(异常点)给有监督模型学习就很难从中学到有效的规律 0x2:常见的有监督学习检测算法 这块主要依靠庞大的打标样本,借助像DLearn这样的网络对打标训练样本进行拟合 0x3:常见的异常检测算法 基于模型的技…
这个应该是目前最全的Tracking相关的文章了 一.Surveyand benchmark: 1.      PAMI2014:VisualTracking_ An Experimental Survey,代码:http://alov300pp.joomlafree.it/trackers-resource.html 2.      CVPR2013:Online Object Tracking: A Benchmark(需FQ) 3.      SignalProcessing  2011:…
Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification 2019-06-21 15:45:11 Paper: https://arxiv.org/abs/1809.04427 Code: https://github.com/longcw/MOTDT 1. Background and Motivation:  多目标跟踪的核心思想是数据连接(d…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有一些 也可以划归到计算机视觉中去.这都不重要,只要知道有这么个方法,能为自己 所用,或者从中得到灵感,这就够了. 8. Edge Detection 边缘检测也是图像处理中的一个基本任务.传统的边缘检测方法有基于梯度 算子,尤其是 Sobel 算子,以及经典的 Canny 边缘检测.到现在,Cann…