这是个06年的老文章了,但是很多地方还是值得看一看的. 一.概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层的BP推导讲解. 二.经典BP算法 前向传播需要注意的是数据归一化,对训练数据进行归一化到 0 均值和单位方差,可以在梯度下降上改善,因为这样可以防止过早的饱,这主要还是因为早期的sigmoid和tanh作为激活函数的弊端(函数在过大或者过小的时候,梯度都很小),等现在有了RELU和batch normali…
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 论文链接:https://arxiv.org/pdf/1704.04861.pdf 摘要和Prior Work就略了,懒:)   Summary: 总的来说,MobileNet相对于标准卷积过程有以下几点不同: 1) 将标准的卷积操作分为两步:depthwise convolution和pointwise convolution.即…
一. 预备知识 包括 Linear Regression, Logistic Regression和 Multi-Layer Neural Network.参考 http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/ 或者coursera看Andrew Ng 的机器学习课程.二者只是在某些公式表达上有细微的差距. 二. 卷积神经网络CONVNET 此部分来自 http://m.blog.csdn.net/ar…
Improving neural networks by preventing co-adaptation of feature detectors arXiv preprint arXiv: 1207.0580, 2012 G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov Dropout: A Simple Way to Prevent Neural Networks from Overf…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week2 Neural Networks Basics 2.1 Logistic Regression as a Neutral Network 2.1.1 Binary Classification 二分类 逻辑回归是一个用于二分类(binary classification)的算法.首先我们从一个问题开始说起,这里有一个二分类问题的例子,假如你有一张图片作为输入,比…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低层视觉问题,提出了一般性的用于解决低层视觉问题的对偶卷积神经网络.作者认为,低层视觉问题,如常见的有超分辨率重建.保边滤波.图像去雾和图像去雨等,这些问题经常涉及到估计目标信号的两个成分:结构和细节.因此,文章提出DualCNN,它包含两个平行的分支来分别恢复结构和细节信息. 具体内容参见https…
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral FilteringAuthors:Michaël DefferrardXavier BressonPierre VandergheynstPaper:Download Source:NeurIPS 2016 Abstract 基于   spectral graph theory  ,为设计 localized c…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   1. 引言: 本文尝试用 基于四个方向的 RNN 来替换掉 CNN中的 convolutional layer(即:卷积+Pooling 的组合).通过在前一层的 feature 上进行四个方向的扫描,完成特征学习的过程. The recurrent layer ensures that each…