Doc2vec实现原理】的更多相关文章

论文来源:https://www.eecs.yorku.ca/course_archive/2016-17/W/6412/reading/DistributedRepresentationsofSentencesandDocuments.pdf 1.Doc2vec概述 Doc2vec 和熟知的 Word2vec 类似,只不过 Word2vec 是训练词向量,而 Doc2vec 可以训练句子,段落,文档的向量表示. Doc2vec 将文本向量化的应用解决了几个问题: 1)解决了文本中词之间的顺序问…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
word2vec是Google在2013年开源的一款将词表征为实数值向量的高效工具. gensim包提供了word2vec的python接口. word2vec采用了CBOW(Continuous Bag-Of-Words,连续词袋模型)和Skip-Gram两种模型. 模型原理 语言模型的基本功能是判断一句话是否是自然语言, 从概率的角度来说就是计算一句话是自然语言的概率. 直观地讲"natural language"这个词组出现的概率要比"natural warship&q…
本篇博客是Gensim的进阶教程,主要介绍用于词向量建模的word2vec模型和用于长文本向量建模的doc2vec模型在Gensim中的实现. Word2vec Word2vec并不是一个模型--它其实是2013年Mikolov开源的一款用于计算词向量的工具.关于Word2vec更多的原理性的介绍,可以参见我的另一篇博客:word2vec前世今生 在Gensim中实现word2vec模型非常简单.首先,我们需要将原始的训练语料转化成一个sentence的迭代器:每一次迭代返回的sentence是…
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值. Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现了word2vec功能,以便进行进一步的处理. 具体API看官网:https://radimrehurek.com/gensim 中文分词 中文需要分词,英文就不需要了,分词用的 jieba . def segment(d…
目录 一.Doc2vec原理 二.代码实现 三.总结   一.Doc2vec原理 前文总结了Word2vec训练词向量的细节,讲解了一个词是如何通过word2vec模型训练出唯一的向量来表示的.那接着可能就会想到,有没有什么办法能够将一个句子甚至一篇短文也用一个向量来表示呢?答案是肯定有的,构建一个句子向量有很多种方法,今天我们接着word2vec来介绍下Doc2vc,看下Doc2vec是怎么训练一个句子向量的. 许多机器学习算法需要的输入是一个固定长度的向量,当涉及到短文时,最常用的固定长度的…
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该文件,会报错 4.运行test2.js 二.模块简单使用 为了编写可维护的代码,我们把很多函数分组,分别放到不同的文件里,这样,每个文件包含的代码就相对较少,很多编程语言都采用这种组织代码的方式.在Node环境中,一个.js文件就称之为一个模块(module). 模块化的开发的好处:提高代码的可维护性,避免修…
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结.这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结.LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理. 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处理领域, LDA是隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA),…
KVM 虚拟化原理探究- overview 标签(空格分隔): KVM 写在前面的话 本文不介绍kvm和qemu的基本安装操作,希望读者具有一定的KVM实践经验.同时希望借此系列博客,能够对KVM底层有一些清晰直观的认识,当然我没有通读KVM的源码,文中的内容一部分来自于书籍和资料,一部分来自于实践,还有一些来自于自己的理解,肯定会有一些理解的偏差,欢迎讨论并指正.本系列文章敬代表我个人观点和实践,不代表公司层面. KVM虚拟化简介 KVM 全称 kernel-based virtual mac…