#include<iostream> #include<algorithm> #include<queue> #include<cstring> #include<cstdio> #define maxn 300 #define maxm 15000 using namespace std; struct Edge { int next; int to; int w; }edge[maxm]; int x,y; int head[maxm]; i…
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:…
P2764 最小路径覆盖问题 这个题目之前第一次做的时候感觉很难,现在好多了,主要是二分图定理不太记得了,二分图定理 知道这个之后就很好写了,首先我们对每一个点进行拆点,拆完点之后就是跑最大流,求出最大匹配数, 然后就可以求出最小路径覆盖数,这个题目的难点在于求路径,其实很好写,就是用一个数组来写就可以了. 每一个点都记录一下它下一个点是哪个位置,最后把拆开了的点合并就可以了. #include <cstdio> #include <cstring> #include <cs…
Luogu 2764 最小路径覆盖问题 / Libre 6002 「网络流 24 题」最小路径覆盖 (网络流,最大流) Description 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中路径可以从V的任何一个顶点开始,长度也是任意的,特别地,可以为0.G的最小路径覆盖是G的所含路径条数最少的路径覆盖. 设计一个有效算法求一个有向无环图G的最小路径覆盖. Input 第1行有2个正整数n和m.n是给定有向无…
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:…
P2764 最小路径覆盖问题 题面 题目描述 «问题描述: 给定有向图 \(G=(V,E)\) .设 \(P\) 是 \(G\) 的一个简单路(顶点不相交)的集合.如果 \(V\) 中每个顶点恰好在 \(P\) 的一条路上,则称 \(P\) 是 \(G\) 的一个路径覆盖. \(P\) 中路径可以从 \(V\) 的任何一个顶点开始,长度也是任意的,特别地,可以为 \(0\) . \(G\) 的最小路径覆盖是 \(G\) 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图 \(G\)…
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\(P\)是\(G\) 的一个路径覆盖.\(P\) 中路径可以从\(V\) 的任何一个顶点开始,长度也是任意的,特别地,可以为\(0\).\(G\) 的最小路径覆盖是\(G\)的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图\(G\) 的最小路径覆盖. 提示:设\(V={1,2,....…
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 假设有 n nn 根柱子,现要按下述规则在这 n nn 根柱子中依次放入编号为 1,2,3,4,⋯ 1, 2, 3, 4, \cdots1,2,3,4,⋯ 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 2 22 个相邻球的编号之和为完全平方数. 试设计一个算法,计算…
题目描述 给定有向图 G=(V,E)G=(V,E) .设 PP 是 GG 的一个简单路(顶点不相交)的集合.如果 VV 中每个定点恰好在PP的一条路上,则称 PP 是 GG 的一个路径覆盖.PP中路径可以从 VV 的任何一个定点开始,长度也是任意的,特别地,可以为 00 .GG 的最小路径覆盖是 GG 所含路径条数最少的路径覆盖.设计一个有效算法求一个 GAP (有向无环图) GG 的最小路径覆盖. 提示:设 V=\{1,2,...,n\}V={1,2,...,n} ,构造网络 G_1=\{V_…
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0.G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖.设计一个有效算法求一个有向无环图G 的最小路径覆盖.提示:设V={1,2,.... ,n},构造网络G1=(V1,E1)如下: 每条边的容量均为1.求网络G1的( 0 x , 0 y )最大流. «编程任务:…