CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+F[a[l+1]]+...F[a[r]] mod 1e9+7 的余数 矩阵快速幂求斐波那契 矩阵满足乘法分配律和结合律! 所以可以每个节点维护矩阵/矩阵和,区间加相当于区间乘矩阵 注意:不要把快速幂写在里面,复杂度平添一个log.把\(B^C\)算出来之后传进去就好了 #include <iostr…
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types: 1 l r x - increase all integers on the segment from l…
Description 有一个长为\(n\)的数列\(a_{1},a_{2}...a_{n}\),你需要对这个数列维护如下两种操作: \(1\space l \space r\space x\) 表示将数列中的\(a_{l},a_{l+1}...a_{r-1},a_{r}\)加上\(x\) \(2\space l\space r\) 表示要你求出\(\sum_{i=l}^{r}fib(a_{i})\)对\(10^9+7\)取模后的结果 fib(x)fib(x)表示的是斐波那契的第\(x\)项,\…
题解 (不会矩阵加速的先去学矩阵加速) 反正我想不到线段树维护矩阵.我太菜了. 我们在线段树上维护一个区间的斐波那契的列矩阵的和. 然后询问时提取每个符合题意列矩阵的答案项(不是列矩阵存了两项吗,一个是当前项,一个是用来递推的) 因为矩阵乘有结合律所以区间加这个操作就直接区间乘变换矩阵的x次方就行. 然后记得开long long #include<iostream> #include<cstring> #include<cstdio> #include<algor…
C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard input output: standard output Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types: 1 l…
Problem Description Given a binary string S[1,...,N] (i.e. a sequence of 0's and 1's), and Q queries on the string.There are two types of queries:1. Flipping the bits (i.e., changing all 1 to 0 and 0 to 1) between l and r (inclusive).2. Counting the…
http://acm.hdu.edu.cn/showproblem.php?pid=5068 题意给的略不清晰 m个询问:从i层去j层的方法数(求连段乘积)或者修改从x层y门和x+1层z门的状态反转(更新只需更新一个节点的矩阵) 直接贴题解 我们可以把第i层跟第i+1层之间楼梯的通断性构造成一个2*2的通断性矩阵,1表示通,0表示不通.那么从第a层到第b层,就是将a到b-1的通断性矩阵连乘起来,然后将得到的答案矩阵上的每个元素加起来即为方案数.想到矩阵的乘法是满足结合律的,那么我们可以用线段树来…
Easy version:Codeforces 题面传送门 & 洛谷题面传送门 Hard version:Codeforces 题面传送门 & 洛谷题面传送门 首先看到这种从某一种颜色的点连向另一种颜色的点,要求经过的边不重复的问题,可以很自然地想到网络流,具体来说咱们建立源 \(S\) 和汇 \(T\),从源点 \(S\) 向所有红色点连容量为 \(1\) 的边,从所有蓝色点向汇点 \(T\) 连容量为 \(1\) 的边,然后将网络内部所有边都改为容量为 \(1\) 的双向边,然后跑最大…
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 我做这道 *2600 的动力是 wjz 出了道这个套路的题,而我连起码的思路都没有,wtcl/kk 首先考虑怎样对某个固定的串计算答案,这显然可以 \(dp\) 解决,设 \(dp_{i,j}\) 表示考虑前 \(i\) 个字符,删去之后与 \(2017\) 的 LCS 为 \(j\),最少需删除多少个字符,那么显然有转移方程: \(dp_{i,0}=\begin{cases}dp_{i-1,0}&(s[i]\neq'2')\…
有两个操作: 将 $[l,r]$所有数 + $x$ 求 $\sum_{i=l}^{r}fib(i)$ $n=m=10^5$   直接求不好求,改成矩阵乘法的形式:  $a_{i}=M^x\times fib_{1}$直接用线段树维护 $M^x$ 即可. 因为矩阵乘法是满足结合律的: $A*B+A*C=A*(B+C)$ #include <cstdio> #include <algorithm> #include <cstring> #define lson (now &…