[BZOJ1489][HNOI2009]双递增序列(动态规划) 题面 BZOJ 洛谷 题解 这\(dp\)奇奇怪怪的,设\(f[i][j]\)表示前\(i\)个数中,第一个数列选了\(j\)个数,第二个数列的最大值的最小情况. 那么转移如下,如果\(a_i>a_{i-1}\),那么可以直接接在第一个序列后面,\(f[i][j]=f[i-1][j-1]\) 然后考虑怎么样接在第二个序列后面,如果\(a_i>f[i-1][i-j]\),那么就可以接在第二个序列后面,即从前\(i-1\)个位置中,有…
小烈送菜 题目描述 小烈一下碰碰车就被乐满地的工作人员抓住了.作为扰乱秩序的惩罚,小烈必须去乐满地里的"漓江村"饭店端盘子. 服务员的工作很繁忙.他们要上菜,同时要使顾客们尽量高兴.一位服务生为 \(n\) 个顾客上菜.这 \(n\) 个顾客坐成一排,小烈从一端的厨房中端出\(n\)盘菜(不要问我为什么小烈能一下子端住 \(2500\) 盘菜,他就是能)为 \(n\) 个顾客各上一道相同的菜. 显然,小烈需要走一个来回,如图: 本来,小烈可以按 \(1,2,3...n\) 的顺序一次给…
小烈送菜 小烈一下碰碰车就被乐满地的工作人员抓住了.作为扰乱秩序的惩罚,小烈必须去乐满地里的"漓江村"饭店端盘子. 服务员的工作很繁忙.他们要上菜,同时要使顾客们尽量高兴.一位服务生为 n个顾客上菜.这 n 个顾客坐成一排,小烈从一端的厨房中端出 n 盘菜(不要问我为什么小烈能一下子端住 2500 盘菜,他就是能)为 n个顾客各上一道相同的菜.显然,小烈需要走一个来回,如图:本来,小烈可以按 1,2,3...n的顺序一次给每个顾客上菜,但是,聪明的小烈通过观察发现,每个顾客都有一个开心…
一.方格取数: 设有N*N的方格图(N<=20),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0. 某人从图的左上角的A(1,1) 点出发,可以向下行走,也可以向右走,直到到达右下角的B(n,n)点.在走过的路上(包括起点在内),他可以取走方格中的数(取走后的方格中将变为数字0).此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大.   思路:emm...这咋写啊,好像是dp???可是你选了一个数后,第二次取数的时候不就不能取了,这不是有后效性了吗... 所以…
博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法--按着学长思路又推一遍--最后理解 (前后的"学长"不是同一个人) 7.23 : 写出代码,完善细节. (建议改成:西   天   取   经) 首先,网上对于这道题的题解绝大部分是错误的!(比如洛谷上的部分题解) 用LIS做是不行的 玄学贪心是不行的 dp转移方程不能自圆其说是不行的…
次元传送门:洛谷P1373 思路 设f[i][j][t][1/0]表示走到(i,j)时 小a减去uim的差值为t 当前是小a取(0) uim取(1) 那么转移就很明显了 f[i][j][t][]=(f[i][j][t][]+f[i-][j][(t-map[i][j]+k)%k][])%;//因为当前是小a取 前一步是uim取 差值增加 f[i][j][t][]=(f[i][j][t][]+f[i][j-][(t-map[i][j]+k)%k][])%; f[i][j][t][]=(f[i][j]…
题意 这个DP状态有点神. 首先考虑一个最暴力的状态:\(f_{i,j,k,u}\)表示第一个选了\(i\)个,第二个选了\(j\)个,第一个结尾为\(k\),第二个结尾为\(u\)是否可行. 现在考虑消减状态: 1.首先知道了处理到第几个,那么只要知道一个长度就能推出另一个. 因此状态可以改为\(f_{i,j,k,u}\)表示处理到了第\(i\)个,第一个序列选了\(j\)个,第一个序列结尾为\(k\),第二个序列结尾为\(u\)是否可行.(这并没有减少维数,只是转化下,方便处理.) 2.既然…
传送门 Solution 前几天刚做了类似题,这种将一个序列拆分为两个单调序列的题一般都是设\(dp[i]\)表示i为一个单调序列的末尾时,另一个序列的末尾是多少 然后应用贪心的思想,在这道题中就是让另一个序列末尾最小. 另外这道题还有长度的限制,不过由于总长知道,只需记其中一个的序列长度即可 Code //By Menteur_Hxy #include <cmath> #include <cstdio> #include <cstring> #include <…
感觉这个题还蛮难想的. 首先状态特别难想.设\(dp[i][j]\)表示前i个数,2序列的长度为j的情况下,2序列的最后一个数的最小值. 其中1序列为上一个数所在的序列,2序列为另外一个序列. 这样设状态的巧妙之处在于,它几乎完美地用最精炼的语言描述了序列的信息,使我们可以方便地转移.我们现在知道1序列的最后一个数\(seq[i]\),2序列的最后一个数\(dp[i][j]\).1序列的长度\(i-j\),2序列的长度\(j\). 于是转移就是: 如果可以接在1序列上的话,即\(seq[i-1]…
不难发现本题贪心是不好做的,可以考虑 \(dp\). 首先的一个想法就是令 \(dp_{i, j, k, l}\) 表示当前选到第 \(i\) 个位置,当前第一个序列选了 \(j\) 个数,当前第一个序列最后一个元素为 \(k\),第二个序列最后一个元素为 \(l\) 是否合法.这样的话转移十分显然,但复杂度过高了.进一步我们可以发现 \(k, l\) 中一定有一个是 \(a_i\),于是我们可以令 \(dp_{i, j, k, 0 / 1}\) 表示当前选到第 \(i\) 个位置,当前第一个序…