【线段树】[Luogu P4198]楼房修建】的更多相关文章

显然要维护斜率区间单调递增 并且第一个必选,后一个比前一个选中的斜率大的必选 考虑如何合并两个区间 我们维护一个least值,least这个值必选,且之后选的都必须严格大于least,Push_Up的时候就像在线段树上二分一样做就好了 这样每次Push_Up是$logn$的,线段树单点修改时$logn$的,所以总复杂度是$O(nlog^2n)$的,再维护一个区间最大值可以做到一些不必要但是可以卡常的剪枝... #include<bits/stdc++.h> #define writeln(x)…
题目大意: 小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造,它们的高度均为0.在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做).请你帮小A数数每天在建筑队完工之后…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段 表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建…
题目 传送门 题解 首先转化成到(0,0)(0,0)(0,0)的斜率. 那么就是求多少个点是前缀最大值. 做法是线段树,用gao(i,x)gao(i,x)gao(i,x)表示在iii区间内,之前最大值为xxx的答案. 然后发现gao(p→r,p→l→max)gao(p\to r,p\to l\to max)gao(p→r,p→l→max)就是gao(p,0)−gao(p→l,0)gao(p,0)-gao(p\to l,0)gao(p,0)−gao(p→l,0),所以直接用数组存一下gao(i,0…
思路:分块 提交:2次(第一次的求解有问题) 题解: 设块长为$T$,我们开$N/T$个单调栈,维护每一块的上升斜率. 修改时暴力重构整个块,$O(T)$ 求解时记录一个最大斜率$lst$,然后块内二分,求出能看见几个,同时更新$lst$ 时间复杂度$O(N*(T+\frac{N}{T}*log_2T)$,也不知道怎么算最小值,瞎猜$T=\sqrt{N*log_2N}$(其实当时算了一下,现在发现算错了,就当是猜的吧$qwq$),后来试了试,定块长$1000$也可以. #include<cstd…
题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维平面上.小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度.如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的. 施工队的建造总共进行了M天.初始时,所有楼房都还没有开始建造…
原题传送门 根据斜率来建线段树,线段树维护区间最大斜率以及区间内能看见的楼房的数量(不考虑其他地方的原因,两个节点合并时再考虑) 细节见程序 #include <bits/stdc++.h> #define db double #define N 100005 #define getchar nc using namespace std; inline char nc(){ static char buf[100000],*p1=buf,*p2=buf; return p1==p2&&…
题面:P5200 [USACO19JAN]Sleepy Cow Sorting 题解: 最小操作次数(记为k)即为将序列倒着找第一个P[i]>P[i+1]的下标,然后将序列分成三部分:前缀部分(待转移部分),k,后缀部分(不需转移部分). 用树状数组维护前缀部分每一个数挪到后缀部分所需的最小代价(即插到第一个小于它的数前)(这部分完全可以用线段树做). 代码: #include<cstdio> #include<cstring> #include<iostream>…
#include<cstdio> #include<cstring> #include<algorithm> #define R register #define llt long long int #define N 100000 using namespace std; inline void read(llt& x){ char temp=getchar();bool u=0; for(x=0;temp<'0'||temp>'9';u=temp…
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define type long long int #define N (100000+2) using namespace std; type n,m; type edge[N<<2]; type sum[N<<2]; void change(type &x,type &…