You're giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It's a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined.…
二分图二•二分图最大匹配之匈牙利算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了.因为过年时间并不是很长,所以姑姑希望能够尽可能在一天安排比较多的相亲.由于一个人同一天只能和一个人相亲,所以要从当前的相亲情况表里选择尽可能多的组合,且每个人不会出现两次.不知道有没有什么好办法,对于当前给定的相亲情况表,能够算出最多能同时安排多少组相亲呢? 同样的,我们先将给定的情况表转换成图G=(V,…
序: 既然是个图,并且求边数的最大值.那么这就可以转化为网络流的求最大流问题. 只需要将源点与其中一子集的所有节点相连,汇点与另一子集的所有节点相连,将所有弧的流量限制置为1,那么最大流 == 最大匹配.(感谢yulemao大神的指点) 只需要在初始化的时候修改一下,就可以直接用求最大流的算法模板了. 本文代码使用EK算法, 为POJ 1469的AC代码. EK算法解析 源代码: /* About: 二分图最大匹配_网络流EK算法 2017/04/22 */ #include <iostream…
二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是递归的方式以便于理解,然而迭代的方式会更好,各位可以自行实现. 1.二分图.最大匹配 什么是二分图:二分图又称作二部图,是图论中的一种特殊模型. 设G=(V,E)是一个无向图,如果顶点V可分割为两个互不相交的子集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(…
博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利算法 1.前言 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图.准确地说:把一个图的顶点划分为两个不相交集 U 和V ,使得每一条边都分别连接U.V中的顶点.如果存在这样的划分,则此图为一个二分图.二分图的一个等价定义是:不含有「含奇数条边的环」的图.图…
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了.因为过年时间并不是很长,所以姑姑希望能够尽可能在一天安排比较多的相亲.由于一个人同一天只能和一个人相亲,所以要从当前的相亲情况表里选择尽可能多的组合,且每个人不会出现两次.不知道有没有什么好办法,对于当前给定的相亲情况表,能够算出最多能同时安排多少组相亲呢? 同样的,我们先将给定的情况表转换成图G=(V,E).在上一回中我们已经知道这个图可以…
目录 1 问题描述 2 解决方案   1 问题描述 何为二分图的最大匹配问题? 引用自百度百科: 首先得说明一下何为匹配: 给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配. 极大匹配(Maximal Matching)是指在当前已完成的匹配下,无法再通过增加未完成匹配的边的方式来增加匹配的边数.最大匹配(maximum matching)是所有极大匹配当中边数最大的一个匹配.选择这样的边数最大的子集称为图的最大匹配问题. 特别注意:二分图…
定义 如果一个图\((E,V)\)的顶点集\(E\)能够被能够被分成两个不相交的集合\(X,Y\),且每一条边都恰连接\(X,Y\)中的各一个顶点,那么这个图就是一个二分图. 容易得知,它就是不含有奇数环的图(这个等价定义有时候很重要). 一个匹配是一个边的集合,其中任意两条边都没有公共顶点.顾名思义可以得到一个图的最大匹配的定义.特别地,如果一个图的某个匹配中,所有顶点都是匹配点,那么它是一个完美匹配. 由完美匹配和最大匹配这两个定义我们可以得到两类问题: 有没有可能使得所有顶点都被匹配? 一…
http://acm.hdu.edu.cn/showproblem.php?pid=3729 I'm Telling the Truth Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1427    Accepted Submission(s): 719 Problem Description After this year’s col…
这个算法的本质还是不断的找增广路: KM算法的正确性基于以下定理:若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配. 这个定理是显然的.因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和:如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和.所以相等子图的完备匹配一定是二分图的最大权匹配. (1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,l…