kruskal算法和prim算法 都说 kruskal是加边法,prim是加点法 这篇解释也不错:这篇 1.kruskal算法 因为是加边法,所以这个方法比较合适稀疏图.要码这个需要先懂并查集.因为我不会画好看的图,所以看不懂的话推荐下面博客的说明.这里是下面. 步骤: 1.把每个点都看成一棵树,那么你就会得到一片森林... 2.把每棵树之间的距离从小到大排序,即把边排序 3.从小到大取边,把不在同一棵树的点连通到同一棵树上...最后你会得到一棵树,就是最小生成树 我去盗图...这里的图 给个模…
关于图的几个概念定义:          关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图. 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权:权代表着连接连个顶点的代价,称这种连通图叫做连通网. 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边.一颗有n个顶点的生成树有且仅有n-…
部分内容摘自 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vi与vj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vi与vj都有路径相通,则称该有向图为强连通图. 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权:权代表着连接连个顶点的代价,称这种连通图叫做连通网. 生成树:一个连通图的生成树是…
转载出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51908175 关于图的几个概念定义: 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权:权代表着连接连个顶点的代价,称这种连通图叫做连通网. 生成树:一个连通图…
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个无向连通图都会拥有至少一个生成树. 而在无向连通图中,我们让每一个边都拥有一个边权(就是每个边代表一个值). 而我们在有边权的无向连通图中构造一个生成树,使得这个生成树所用的边的边权之和最小.这个生成树就叫这个无向连通图的最小生成树! 上图这个最小生成树的边权之和为9,是所有生成树中边权之和最小的.…
上一期介绍到了kruskal算法,这个算法诞生于1956年,重难点就是如何判断是否形成回路,此处要用到并查集,不会用当然会觉得难,今天介绍的prim算法在kruskal算法之后一年(即1957年)诞生,长江后浪推前浪,前浪死在沙滩上,既然后发明,那一定有很多优点吧?具体又如何用代码实现?比kruskal算法好在哪里?不用担心,小编会一一解答. prim算法的思想: prim算法的主要思想就是让一棵小树不断得到新的树边,直到长成所有节点都在树集合中的大树.具体做法如下:首先先得来思考,最初的小树是…
最小生成树-普利姆(Prim)算法 最小生成树 概念:将给出的所有点连接起来(即从一个点可到任意一个点),且连接路径之和最小的图叫最小生成树.最小生成树属于一种树形结构(树形结构是一种特殊的图),或者说是直链型结构,因为当n个点相连,且路径和最短,那么将它们相连的路一定是n-1条. 可以利用参考一个问题理解最小生成树,有n个村庄,每个村庄之间距离不同,要求村庄之间修路,每一个村庄必须与任意一个村庄联通,如何修路最省钱(修的最短) 普利姆算法介绍 利姆(Prim)算法求最小生成树,也就是在包含n个…
Kruskal算法求最小生成树 测试数据: 5 6 0 1 5 0 2 3 1 2 4 2 4 2 2 3 1 1 4 1 输出: 2 3 1 1 4 1 2 4 2 0 2 3 思路:在保证不产生回路的情况下,选择权值小的边.是否产生回路采用并查集来实现 判断两个点是否连通:如果两个点的祖先不是同一个,说明这两个点不可联通,要标志两个点联通,只要使两个点的祖先是同一个.关于并查集的讲解可以看我转载的一篇文章. 比如初始化的时候ABC的祖先是他自己,先加入了AB这条边,这两个点的的父亲不一样,可…
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小. 对于MST问题,通常常见的解法有两种:Prim算法   或者  Kruskal算法+并查集 对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一…
我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接起来,并且使得权值的和最小.综合以上两个概念,我们可以得出:构造连通网的最小代价生成树,即最小生成树(Minimum Cost Spanning Tree). 找连通图的最小生成树,经典的有两种算法,普里姆算法和克鲁斯卡尔算法,这里介绍普里姆算法. 为了能够讲明白这个算法,我们先构造网图的邻接矩阵,…