强化学习概况 正如在前面所提到的,强化学习是指一种计算机以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使程序获得最大的奖赏,强化学习不同于连督学习,区别主要表现在强化信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强化学习系统如何去产生正确的动作.唯一的目的是最大化效率和/或性能.算法对正确的决策给予奖励,对错误的决策给予惩罚,如下图所示: 持续的训练是为了不断提高效率.这里的重点是性能,这意味着我们需要,在看不见的数据和算…
最近负责一个录屏的小项目,需要录制Windows窗口内容并压缩保存到指定文件夹,本想使用已有的录屏软件,但是本着学习的态度去探索了FFMpeg,本文主要介绍基于FFMpeg开源项目的C#录屏软件开发. 在Windows平台下开发录屏相比Linux比较复杂,Windows平台下录屏有gdigrab和dshow两种方法,由于gdigrab可修改属性受限,所以本文采用dshow方法实现录屏的功能,原理是注册录屏dshow滤镜(例如screen-capture-recorder),然后通过dshow获取…
本文地址:https://www.ebpf.top/post/ubuntu_2104_bpf_env 1. 系统安装 1.1 Vagrant Vagrant 是一款用于构建及配置虚拟开发环境的软件,基于 Ruby,主要以命令行的方式运行.Vagrant 由 HashiCorp 官方出品,相信提到大名鼎鼎的 HashiCorp 公司,大家还能够联想到著名的安全密码存储 Valut.服务注册发现 Consul.大规模调度系统 Normad 等等. Vagrant 可基于官方提供的各种虚拟机打包文件(…
来自: http://www.eefocus.com/Kevin/blog/11-09/230878_53c71.html RSA的SecurID长的是这个样子滴: Mac里面,可以设置VPN, 方法是在网络偏好配置中,点+号,添加一个VPN. 由于Xilinx公司用的是CISCO的IPSec,因此选这一项.有图有真相: 账户名填你的用户名. 密码不需要填, 因为要在连接试时候根据SecureID上的数字实时填写. 然后,填写组帐户名. 点击鉴定设置,会让你填写群组名称和共享密钥. 这两个信息,…
基于循环神经网络(RNN)的智能聊天机器人系统 本设计研究智能聊天机器人技术,基于循环神经网络构建了一套智能聊天机器人系统,系统将由以下几个部分构成:制作问答聊天数据集.RNN神经网络搭建.seq2seq模型训练.智能聊天.经过实验,确定该系统可对本人的聊天话语进行快速并准确的回应,且回复可以模仿朋友的语气风格. 关键词: RNN神经网络: seq2seq模型: 聊天机器人:TensorFlow: 一.设计目标 1.掌握聊天机器人系统原理: 2.掌握循环神经网络(RNN)原理: 3.掌握循环神经…
内容来源:宜信技术学院第3期技术沙龙-线上直播|AI中台——智能聊天机器人平台 主讲人:宜信科技中心AI中台团队负责人王东 导读:随着“中台”战略的提出,目前宜信中台建设在思想理念及架构设计上都已经取得了很多成果.宜信是如何借助中台化的思想打造“AI中台”及相关的智能产品呢?本次直播,宜信科技中心AI中台团队负责人王东老师分享了宜信AI中台的具体实施路径,并重点介绍了AI中台的智能产品——智能聊天机器人平台,包括智能聊天机器人平台的背景理念.设计思想.技术架构和应用场景,该平台能提供什么样的能力…
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届国际机器学习会议(ICML 2018)在瑞典斯德哥尔摩成功举办.ICML 2018 所接收的论文的研究主题非常多样,涵盖深度学习模型/架构/理论.强化学习.优化方法.在线学习.生成模型.迁移学习与多任务学习.隐私与安全等,在本文中,腾讯 AI Lab 的研究者结合自身的研究重心和研究兴趣对部分 IC…
深度强化学习 基本概念 强化学习 强化学习(Reinforcement Learning)是机器学习的一个重要的分支,主要用来解决连续决策的问题.强化学习可以在复杂的.不确定的环境中学习如何实现我们设定的目标. 深度学习 深度学习(Deep Learning)也是机器学习的一个重要分支,也就是多层神经网络,通过多层的非线性函数实现对数据分布及函数模型的拟合.(从统计学角度来看,就是在预测数据分布,从数据中学习到一个模型,然后通过这个模型去预测新的数据) 深度强化学习 深度强化学习(Deep Re…
一.问题引入 回顾上篇强化学习 2 -- 用动态规划求解 MDP我们使用策略迭代和价值迭代来求解MDP问题 1.策略迭代过程: 1.评估价值 (Evaluate) \[v_{i}(s) = \sum_{a\in A} \pi(a|s) \left( {\color{red}R(s, a)} + \gamma \sum_{s' \in S} {\color{red}P(s'|s, a)} \cdot v_{i-1}(s') \right) \] 2.改进策略(Improve) \[q_i(s,a)…
在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法需要完整的状态序列,同时单独对策略函数进行迭代更新,不太容易收敛. 在本篇我们讨论策略(Policy Based)和价值(Value Based)相结合的方法:Actor-Critic算法. 本文主要参考了Sutton的强化学习书第13章和UCL强化学习讲义的第7讲. 1. Actor-Critic…