Games103 浅波模型】的更多相关文章

1.控制论模型 这是对设定的目标,通过多次输入和输出,反馈调节,最终达成目标的方法.广泛运用于自然科学与社会科学中.反馈的周期长短决定了调节精度的大小以及达到目标的速度.反馈结果与目标背离的立即纠正,反馈结果与目标一致的立即复制. 控制论是关于把控过程的科学方法,过程之所以重要在于过程错了可以修正,对了可以复制,有了好点子还可以对过程优化处理,做过的过程可重复.过程走好了,结果不会太差 在个人成长中,反省就充当反馈调节的作用,一个懂得常常自省的人是成长迅速的人,不懂自省或很少自省的人基本进入稳态…
#include<windows.h> #include <osgViewer/Viewer> #include <osgEarthDrivers/gdal/GDALOptions> #include <osg/ShapeDrawable> #include <osgEarthUtil/EarthManipulator> #include <osg/MatrixTransform> #include <osgEarthFeatu…
你是否有过这样的经历?当你在亚马逊商城浏览一些书籍,或者购买过一些书籍后,你的偏好就会被系统学到,系统会基于一些假设为你推荐相关书目.为什么系统会知道,在这背后又藏着哪些秘密呢? 荐系统可以从百万甚至上亿的内容或商品中把有用的东西高效地显示给用户,这样可以为用户节省很多自行查询的时间,也可以提示用户可能忽略的内容或商品,使用户更有黏性,更愿意花时间待在网站上,从而使商家赚取更多的利润,即使流量本身也会使商家从广告中受益. 那么推荐系统背后的魔术是什么呢?其实任何推荐系统本质上都是在做排序. 你可…
众所周知,深度学习在计算机视觉.语音识别.自然语言处理等领域最先取得突破并成为主流方法.但是,深度学习为什么是在这些领域而不是其他领域最先成功呢?我想一个原因就是图像.语音.文本数据在空间和时间上具有一定的内在关联性.比如,图像中会有大量的像素与周围的像素比较类似:文本数据中语言会受到语法规则的限制.CNN对于空间特征有很好的学习能力,正如RNN对于时序特征有强大的表示能力一样,因此CNN和RNN在上述领域各领风骚好多年. 在Web-scale的搜索.推荐和广告系统中,特征数据具有高维.稀疏.多…
计算广告领域中数据特点:    1 正负样本不平衡    2 大量id类特征,高维,多领域(一个类别型特征就是一个field,比如上面的Weekday.Gender.City这是三个field),稀疏 在电商领域,CTR预估模型的原始特征数据通常包括多个类别,比如[Weekday=Tuesday,Gender=Male, City=London, CategoryId=16],这些原始特征通常以独热编码(one-hot encoding)的方式转化为高维稀疏二值向量,多个域(类别)对应的编码向量…
不多说,直接上干货! 五.Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失(呵呵,大牛说,这是不可能的.信息论中有个“信息逐层丢失”的说法(信息处理不等式),设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息.这表明信息处理不会增加信息,大部分处…
原论文:Deep learning over multi-field categorical data 地址:https://arxiv.org/pdf/1601.02376.pdf 一.问题由来 基于传统机器学习模型(如LR.FM等)的CTR预测方案又被称为基于浅层模型的方案,其优点是模型简单,预测性能较好,可解释性强:缺点主要在于很难自动提取高阶组合特征携带的信息,目前一般通过特征工程来手动的提取高阶组合特征.而随着深度学习在计算机视觉.语音识别.自然语言处理等领域取得巨大成功,其在探索特征…
本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类的方法,其实也都很简单.模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征.尝试自动学习交叉特征而非手动.尝试更精准地实现高阶特征(bounded-degree). 广告相关的领域最早大行其道的模型当属LR模型,原因就是LR模型简单,可解释性好,拓展性高,精心细调之后模型效果也会非常好.…
目录 1. 前言 2. BLUP方法 ABLUP GBLUP ssGBLUP RRBLUP 3. 贝叶斯方法 BayesA BayesB BayesC/Cπ/Dπ Bayesian Lasso 4. 机器学习 支持向量机 集成学习 深度学习 5. 其他模型 RKHS GWAS-assisted GS 非加性效应 多变量模型 多组学 6. 小结 参考资料 1. 前言 在介绍GS模型之前,我们有必要先来了解一下混合线性模型(Mixed Linear Model,MLM).混合线性模型是一种方差分量模…
为了对GMM-HMM在语音识别上的应用有个宏观认识,花了些时间读了下HTK(用htk完成简单的孤立词识别)的部分源码,对该算法总算有了点大概认识,达到了预期我想要的.不得不说,网络上关于语音识别的通俗易懂教程太少,都是各种公式满天飞,很少有说具体细节的,当然了,那需要有实战经验才行.下面总结以下几点,对其有个宏观印象即可(以孤立词识别为例). 一.每个单词的读音都对应一个HMM模型,大家都知道HMM模型中有个状态集S,那么每个状态用什么来表示呢,数字?向量?矩阵?其实这个状态集中的状态没有具体的…