代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
基于Python的卷积神经网络和特征提取 用户1737318发表于人工智能头条订阅 224 在这篇文章中: Lasagne 和 nolearn 加载MNIST数据集 ConvNet体系结构与训练 预测和混淆矩阵 过滤器的可视化 Theano层的功能和特征提取 作者:Christian S.Peron 译者:刘帝伟 摘要:本文展示了如何基于nolearn使用一些卷积层和池化层来建立一个简单的ConvNet体系结构,以及如何使用ConvNet去训练一个特征提取器,然后在使用如SVM.Logistic…
TensorFlow实战中AlexNet卷积神经网络的训练 01 出错 TypeError: as_default() missing 1 required positional argument: 'self' 经过百度.谷歌的双重查找,没找到就具体原因.后面去TensorFlow官方文档中发现,tf.Graph的用法如下: g = tf.Graph() with g.as_default(): # Define operations and tensors in `g`. c = tf.co…
卷积神经网络(CNN) 关注公众号"轻松学编程"了解更多. 一.简介 ​ 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 它包括卷积层(convolutional layer)和池化层(pooling layer). ​ 卷积神经网络包括一维卷积神经网络.二维卷积神经网络以及三维卷积神经网络. ​ 一维卷积神经网络常应用于序列类的数据处理: ​ 二维卷积神…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
# -*- coding: utf-8 -*- """ Created on Wed Nov 21 17:32:28 2018 @author: zhen """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('C:/Users/zhen/MNIST_data_…
算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数并没有多少要说的,根据公式定义好就行了,需要注意的是梯度公式的计算. import numpy as np # Collection of activation functions # Referenc…