一.带权有向图 二.算法原理 1)由于我们的节点是从1-6,所以我们创建的列表或数组都是n+1的长度,index=0的部分不使用,循环范围为1-6(方便计算). 2)循环之前,我们先初始化dis数组和mark数组: dis数组中保存我们需要求的开始点(start),到其余所有点的最短路径.初始化的时候,只初始化到自己能够直接到的节点的距离,不能直接到的距离初始化为max_int(即sys.maxsize). mark保存节点的状态,如果已经被计算过,则状态为True,还未被计算过,则为False…
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上,相对较为简单 方案二:分别以图中的每个顶点为源点,共调用[n次][迪杰斯特拉(Dijkstra)算法] 算法思想:贪心算法 时间复杂度:O(n^3) 形式上,相对较为复杂 补充 Dijkstra算法主要应用于:求解[单源最短路径] 1.2 算法描述 1.3 编程复现 1> 定义图模型(邻接矩阵表示…
1.图类基本组成 存储在邻接表中的基本项 /** * Represents an edge in the graph * */ class Edge implements Comparable<Edge> { public Vertex dest; //Second vertex in Edge public double cost; //Edge cost public Edge(Vertex d, double c) { dest = d; cost = c; } @Override pu…
题目链接:http://acm.hit.edu.cn/hoj/problem/view?id=2739 Time limit : 1 sec Memory limit : 64 M A Chinese postman is assigned to a small town in China to deliver letters. In this town, each street is oriented and connects exactly two junctions. The postma…
题目:http://poj.org/problem?id=3565 神奇结论:当总边权最小时,任意两条边不相交! 转化为求二分图带权最小匹配. 可以用费用流做.但这里学一下km算法. https://blog.csdn.net/c20180630/article/details/70175814 km算法适用于求二分图带权最大匹配,所以这里把边权取反. 核心思想在于给两部点带上顶标,通过顶标限制连边,调整顶标实现最优匹配. 一定要注意匈牙利的时候写上!ib[i]的限制! 找调整最小值的时候,也许…
进阶指南的板子好像有点问题..交到hdu上会T 需要了解的一些概念: 交错树,顶标,修改量 #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; #define INF 99999999 #define maxn 305 int lx[maxn],ly[maxn];//顶标 int Match[maxn];//记录匹配值…
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶…
什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离.指定图中的一顶点为源点,找出源点到其它顶点的最短路径和其长度的问题,即是单源最短路径问题. 什么是Dijkstra算法? 求解单源最短路径问题的常用方法是Dijkstra(迪杰斯特拉)算法.该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个顶点. 算法思想 带权图G=<V,…
一,介绍 本文实现带权图的最短路径算法.给定图中一个顶点,求解该顶点到图中所有其他顶点的最短路径 以及 最短路径的长度.在决定写这篇文章之前,在网上找了很多关于Dijkstra算法实现,但大部分是不带权的.不带权的Dijkstra算法要简单得多(可参考我的另一篇:无向图的最短路径算法JAVA实现):而对于带权的Dijkstra算法,最关键的是如何“更新邻接点的权值”.本文采用最小堆作为辅助,以重新构造堆的方式实现更新邻接点权值. 对于图而言,存在有向图和无向图.本算法只需要修改一行代码,即可同时…
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法, 在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 2.算…
Dijkstra算法的标记和结构与prim算法的用法十分相似.它们两者都会从余下顶点的优先队列中选择下一个顶点来构造一颗扩展树.但千万不要把它们混淆了.它们解决的是不同的问题,因此,所操作的优先级也是以不同的方式计算的:Dijkstra算法比较路径的长度,因此必须把边的权重相加,而prim算法则直接比较给定的权重. 源最短路径问题给定一个带权有向图 G=(V,E) ,其中每条边的权是一个非负实数.另外,还给定 V 中的一个顶点,称为源.现在我们要计算从源到所有其他各顶点的最短路径长度.这里的长度…
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 Bellman-Ford算法 §3 Floyd-Warshall算法 §4 Johnson算算法 §5 问题归约 §0 小结 常用的最短路径算法有:Dijkstra算法.Bellman-Ford算法.Floyd-Warshall算法.Johnson算法 最短路径算法可以分为单源点最短路径和全源最短路…
自从打ACM以来也算是用Dijkstra算法来求最短路径了好久,现在就写一篇博客来介绍一下这个算法吧 :) Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. 主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解, 但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,比如数据结构.图论.运筹学等. 首先,大家需要明确…
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine-->mine..... 那么,就存在这样一个问题:给定一个单词作为起始单词(相当于图的源点),给定另一个单词作为终点,求从起点单词经过的最少变换(每次变换只会变换一个字符),变成终点单词. 这个问题,其实就是最短路径问题. 由于最短路径问题中,求解源点到终点的最短路径与求解源点到图中所有顶点的最短路径复…
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两顶点最短带权路径的问题. 单源点的最短路径问题: 给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径.迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法.迪杰斯特拉(Dijkstra)算法描述如下: 示意图 算法分析 结合代码实现部分分析这个算法的运行时间.本博客…
一 综述 Dijkstra算法(迪杰斯特拉算法)主要是用于求解有向图中单源最短路径问题.其本质是基于贪心策略的(具体见下文).其基本原理如下: (1)初始化:集合vertex_set初始为{source_vertex},dist数组初始值为$dist[i] = G.arc[source\_vertex][i],i=0,1,\ldots,n-1$ (2)从顶点集合V-vertex_set中选出$v_j$,满足$dist[j] = Min\left\{dist[i] | v_i∈V-vertex\_…
转自:https://www.cnblogs.com/smile233/p/8303673.html 最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径. AE:100   ADE:90   ADCE:60   ABCE:70 ③单源点最短路径问题 问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径. 应用实例——计…
迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中.在加入的过程…
前言 去年在数据结构(c++)的Dijkstra教学算法案例中,发现了一个 bug 导致算法不能正常的运行,出错代码只是4行的for循环迭代代码. 看到那里就觉得有问题,但书中只给了关键代码的部分,其余皆是伪代码,做伪代码实现,运行了教学代码,证实了相关错误.也给出了能正确运行的for循环迭代代码. 之后便将过程发给出版社,可一年多了,出版社也没有回信...... 也希望大家也可以讨论一下. Dijkstra最短路径算法 Dijkstra最路径算法用于求单源点最短路径问题,问题描述如下:给定带权…
1. 前言 因无向.无加权图的任意顶点之间的最短路径由顶点之间的边数决定,可以直接使用原始定义的广度优先搜索算法查找. 但是,无论是有向.还是无向,只要是加权图,最短路径长度的定义是:起点到终点之间所有路径中权重总和最小的那条路径. 如下图所示,A 到 C 的最短路径并不是 A 直接到 C(权重是…
在路由选择算法中都要用到求最短路径算法.最出名的求最短路径算法有两个,即Bellman-Ford算法和Dijkstra算法.这两种算法的思路不同,但得出的结果是相同的. 下面只介绍Dijkstra算法,它的已知条件是整个网络拓扑和各链路的长度. 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径.因此,求最短路径的算法具有普遍的应用价值. 下面以图1的网络为例来讨论这种算法,即寻找从源结点到网络中其他各结点的最短路径.为方便起见,设源结点为结…
继续复习数据结构和算法,总结一下求解最短路径的一些算法. 弗洛伊德(floyd)算法 弗洛伊德算法是最容易理解的最短路径算法,可以求图中任意两点间的最短距离,但时间复杂度高达\(O(n^3)\),主要思想就是如果想缩短从一个点到另一个点的距离,就必须借助一个中间点进行中转,比如A点到B点借助C点中转的话AB的距离就可以更新为\(D(a,b)=Min(D(a,b),D(a,c)+D(c,b))\),这样我们用每一个结点作为中转结点,尝试对另每两个结点进行距离更新,总共需要三层循环进行遍历. 核心代…
ospf学习-----SPF最短路径算法 常见的路由协议比如RIP.IGRP.BGP是距离矢量协议,OSPF和ISIS是数据链路状态协议.矢量协议路由器只知道本身和与自身相连的接口路由信息,矢量图只是一张方向图,在路由传播的过程中,容易造成环路.RIP路由器采用扁平化设计规避环路,BGP则采用As-path规避环路.OSPF是数据链路状态路由协议,采用的SPF算法,即最小生成树算法(Dijkstar),ospf内不存在路由环路,但是OSPF间传递路由信息的时候,却是矢量路由协议,也就是说OSPF…
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkstra 算法.Bellman-Ford 算法和Floyd 算法,另外还有启发式算法 A*. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 最短路径问题 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 最短路径问题有几种形式…
加权图相关算法 前言 本文主要介绍加权图算法中两个重要应用:最小生成树和最短路径. 求最小生成树时针对的是加权无向图,加权有向图的最小生成树算法成为"最小属树形图"问题,较为复杂,本文不做讨论. 求最短路径则是针对加权有向图,在不同限制条件下,适应不同的算法: 1. 权重非负,采用Dijkstra算法: 2. 不存在环,采用基于拓扑排序的最短路径算法,能够线性空间内解决问题: 3. 不存在负权重环,即如果存在环,环的各条边权重总和不能为负值,采用Bellman-Ford算法. 加权无向…
原理 Dijkstra是一个神奇的最短路径算法,它的优点在于它可以稳定的时间内求出一张图从某点到另一点的距离.它的工作原理非常简单,思路类似于广搜.在搜索前,将每个点的颜色设为白色,第一次将源点Insert进入集合,将源点的最短路(用数组表示)设为0,然后在它的所有白色孩子边上进行一遍搜索,并将经过的点的颜色设为黑色.在搜到更优的距离后对进行适当的更新,让每次都表示到点的最短距离.搜到汇点时停止.此时,表示的就是到达的最短路径. 代码 #include <cstdio> #include &l…
Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值…
从A到B,有多条路线,要找出最短路线,应该用哪种数据结构来存储这些数据. 这不是显然的考查图论的相关知识了么, 1.图的两种表示方式: 邻接矩阵:二维数组搞定. 邻接表:Map<Vertext,List<Edge>>搞定. 其中邻接矩阵适用于稠密图,即图上的任意两点之间均(差不多都)存在一条边. 而A到B之间的路线,显然是稀疏图,果断的选用邻接表. 2.加权有向图最短路径问题,典型的dijkstra最短路径算法. 说干就干,翻翻<数据结构与算法>,自己用Java大概实现…