首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
分布式机器学习(Parameter Server)
】的更多相关文章
分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 文章索引::"机器学习方法","深度学习方法","三十分钟理解"原创系列 2017年3 月,谷歌大脑负责人 Jeff Dean 在 UCSB 做了一场题为<通过大规模深度学习构建智能系统>的演讲[9].Jeff Dean 在演讲中提到,当前的做法是: 解决方案 = 机…
百度DMLC分布式深度机器学习开源项目(简称“深盟”)上线了如xgboost(速度快效果好的Boosting模型)、CXXNET(极致的C++深度学习库)、Minerva(高效灵活的并行深度学习引擎)以及Parameter Server(一小时训练600T数据)等产品,在语音识别、OCR识别、人脸识别以及计算效率提升上发布了多个成熟产品。
百度为何开源深度机器学习平台? 有一系列领先优势的百度却选择开源其深度机器学习平台,为何交底自己的核心技术?深思之下,却是在面对业界无奈时的远见之举. 5月20日,百度在github上开源了其深度机器学习平台.此番发布的深度机器学习开源平台属于“深盟”的开源组织,其核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院.华盛顿大学.纽约大学.香港科技大学,卡耐基·梅陇大学等知名公司和高校. 通过这一开源平台,世界各地的开发者们可以免费获得更优质和更容易使用的分布式机器学习算法源码,从…
【分布式计算】MapReduce的替代者-Parameter Server
原文:http://blog.csdn.net/buptgshengod/article/details/46819051 首先还是要声明一下,这个文章是我在入职阿里云1个月以来,对于分布式计算的一点肤浅的认识,可能有些地方不够妥善,还请看官可以指出不足的地方,共同进步. 一.背景 随着互联网的发展,数据量的增大,很多对于数据的处理工作(例如一些推荐系统.广告推送等)都迁移到了云端,也就是分布式计算系统上.衍生了很多牛逼的分布式计算的计算模型,比较著名的就是MapReduce.MPI.BSP等.…
MXNet之ps-lite及parameter server原理
MXNet之ps-lite及parameter server原理 ps-lite框架是DMLC组自行实现的parameter server通信框架,是DMLC其他项目的核心,例如其深度学习框架MXNET的分布式训练就依赖ps-lite的实现. parameter server原理 在机器学习和深度学习领域,分布式的优化已经成了一种先决条件,因为单机已经解决不了目前快速增长的数据与参数带来的问题.现实中,训练数据的数量可能达到1TB到1PB之间,而训练过程中的参数可能会达到\(10^9\)到\(1…
转:Parameter Server 详解
Parameter Server 详解 本博客仅为作者记录笔记之用,不免有很多细节不对之处. 还望各位看官能够见谅,欢迎批评指正. 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/50545780 MXNet 是李沐和陈天奇等各路英雄豪杰打造的开源深度学习框架(最近不能更火了),其中最吸引我的是它的分布式训练的特性:而提供支持其分布式训练特性的正是当年…
Adam:大规模分布式机器学习框架
引子 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/46676515 又是好久没写博客,记得有一次看Ng大神的訪谈录,假设每周读三篇论文,那么经年以后,必定成为对某个领域非常熟悉的人. 可惜,在忙忙碌碌中,我居然做不到这一点. 可是,我眼下的打算是尽心尽力的去做,哪怕一周仅仅读一篇呢. 胡适先生曾说过:"怕什么真理无穷,进一步有进一步的欢喜".然而.这当中的差别在于,我还没有达到追求真理的高度,我就是想看看这个技术是咋子回事…
分布式机器学习框架:MxNet 前言
原文连接:MxNet和Caffe之间有什么优缺点一.前言: Minerva: 高效灵活的并行深度学习引擎 不同于cxxnet追求极致速度和易用性,Minerva则提供了一个高效灵活的平台让开发者快速实现一个高度定制化的深度神经网络. Minerva在系统设计上使用分层的设计原则,将"算的快"这一对于系统底层的需求和"好用"这一对于系统接口的需求隔离开来,如图3所示.在接口上,我们提供类似numpy的用户接口,力图做到友好并且能充分利用Python和nu…
[Distributed ML] Parameter Server & Ring All-Reduce
Resource ParameterServer入门和理解[较为详细,涉及到另一个框架:ps-lite] 一文读懂「Parameter Server」的分布式机器学习训练原理 并行计算与机器学习[很有必要过一遍大佬的视频] 并行计算与机器学习课程所有视频: 1. 并行计算基础以及MapReduce: https://youtu.be/gVcnOe6_c6Q 2. 参数服务器.去中心化: https://youtu.be/Aga2Lxp3G7M 3. Ring All-Reduce: https:…
parameter server学习
关于parameter server的学习: https://www.zybuluo.com/Dounm/note/517675 机器学习系统相比于其他系统而言,有一些自己的独特特点.例如: 迭代性:模型的更新并非一次完成,需要循环迭代多次 容错性:即使在每个循环中产生一些错误,模型最终仍能收敛 参数收敛的非均匀性:有些参数几轮迭代就会收敛,而有的参数却需要上百轮迭代. 而且工业界需要训练大型的机器学习模型,一些广泛应用的特定的模型在规模上有两个特点: 参数很大,超过单个机器的容纳的能力(大型L…
分布式机器学习框架:CXXNet
caffe是很优秀的dl平台.影响了后面很多相关框架. cxxnet借鉴了很多caffe的思想.相比之下,cxxnet在实现上更加干净,例如依赖很少,通过mshadow的模板化使得gpu和cpu代码只用写一份,分布式接口也很干净. CXXNET:极致的C++深度学习库 cxxnet是一个并行的深度神经网络计算库,它继承了xgboost的简洁和极速的基因,并开始被越来越多人使用.例如Happy Lantern Festival团队借助Cxxnet在近期的Kaggle数据科学竞赛中获得…