【python】kNN基础算法--推荐系统】的更多相关文章

虽然把text转成全部量化是可以的,但是还是需要把text转成numpy的形式(这个是必须掌握的) 在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式. 数据规范化.数据归一化.数据算法化.输出误差分析 代码: # -*- coding:utf-8 -*- from numpy import * def file2matrix(filename): fr = open(filename) numberOfLines = len(fr.readlines()) #get t…
# -*- coding:utf-8 -*- # import numpy as np #import numpy 和from numpy import *是不一样的 # # # import numpy,如果你使用numpy的属性都需要在前面加上numpy # # # # from numpy import * ,则不需要加入numpy # # # # 后者不建议使用,如果你下次引用和numpy里的函数一样的情况,就会出现命名冲突 # # 举个例子:将列表[1,2,3,4,5,6,7]生成nu…
(1)k-近邻算法是分类数据最简单最有效的方法. (2)在将数据输入到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式. (3)所有的推荐模型都可以使用这个算法,只要将结果量化就行了,主要是要考虑权重的设计.# -*- coding:utf-8 -*-#数字型聚类分析from numpy import *import operatordef createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labe…
一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 2.时间复杂度 在计算机科学中,算法的时间复杂度是一个函数,它定性描述了该算法的运行时间.这是一个关于代表算法输入值…
一.多层语法糖本质 """ 语法糖会将紧挨着的被装饰对象名字当参数自动传入装饰器函数中""" def outter(func_name): print('加载outter') def wrapper(*args, **kwargs): print('执行了wrapper') res = func_n…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣.她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和…
KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习,算法本身不是最难的,最难的是: 1.数学建模:把业务中的特性抽象成向量的过程: 2.选取适合模型的数据样本. 这两个事都不是简单的事.算法反而是比较简单的事. 本质上,KNN算法就是用距离来衡量样本之间的相似度. 2.算法图示 ◊ 从训练集中找到和新数据最接近的k条记录,然后根据多数类来决定新数据类…
1.简介                                                                                               关于Python的知识,其实自己很早就想单独开一个系列出来,但是碍于自己太懒了,到现在都还没执行.最近觉得自己实在是没有脸面在拖延下去了,遂将自己学习的整理一下,便于以后自己翻看.此前花过一段时间学习了有些Python的基础,做了一些简单的笔记,记录在印象笔记里.后期买了几本关于Python的书籍,但…
现在,越来越多的公司面试以及考验面试对算法要求都提高了一个层次,从现在,我讲每日抽出时间进行5+1算法题讲解,5是指基础题,1是指1道中等偏难.希望能够让大家熟练掌握python的语法结构已经一些高级函数的应用.这些题目是在某些刷题的网站上登记的有水平的题目.这里如果有需要input的简单题,就略去了输出结果.如果时间充裕,则就会增加每日更多习题. 一:基础算法题10道 1.判断用户输入的年份是否为闰年 题目解析: (1)问题分析:能被4整除但不能被100整除的年份为普通闰年,能被400整除的年…
一:基础算法题5道 1.阿姆斯特朗数 如果一个n位正整数等于其各位数字的n次方之和,则称该数为阿姆斯特朗数.判断用户输入的数字是否为阿姆斯特朗数. (1)题目分析:这里要先得到该数是多少位的,然后再把每一位的数字截取出来,把各位数字的n次方之和和该数一起判断即可.(2)算法分析:python中有len()函数可以得到一个字符串的长度,因此需要先把一个正整数转化为正整数字符串.然后从高位向低位截取(也可以反过来).或者高效算法利用for循环切片. 从高位到低位:用正整数除了10的n次方,得到的商就…
# algorithm:K-NN(最近邻分类算法)# author:Kermit.L# time: 2016-8-7 #==============================================================================from numpy import *import operatorimport matplotlib.pyplot as plt def creatDataSet(): group = array([[1.0, 1.1],…
1. 前言 数据结构和算法是程序的 2 大基础结构,如果说数据是程序的汽油,算法则就是程序的发动机. 什么是数据结构? 指数据在计算机中的存储方式,数据的存储方式会影响到获取数据的便利性. 现实生活中,如果把春夏秋冬的衣物全部堆放在一起,当需要某一季节的衣服时,寻找起来是困难的. 如果分门别类.有条理地存放,则寻找起来会方便很多. 同理,编写程序时,如果对程序所依赖的数据有条理.易于查找的方式进行存储,则在处理数据时,可以提升程序的整体性能. 数据结构准确说是一个空间管理概念,同样的数据使用不同…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对python相对比较熟悉,而且感觉用python实现数据结构相对容易一点.就把这个月来学到的一些,整理一下做个月底总结. 涉及到的书有<啊哈算法>.<复杂性思考>.<数据结构基础(C语言版) 第二版>.<Python Algorithms>,以及其他大牛们的网上教…
Lists 当实现 list 的数据结构的时候Python 的设计者有很多的选择. 每一个选择都有可能影响着 list 操作执行的快慢. 当然他们也试图优化一些不常见的操作. 但是当权衡的时候,它们还是牺牲了不常用的操作的性能来成全常用功能. 本文地址:http://www.cnblogs.com/archimedes/p/python-datastruct-algorithm-list-dictionary.html,转载请注明源地址. 设计者有很多的选择,使他们实现list的数据结构.这些选…
在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义域是输入数据的长度,值域通常是执行步骤数量(时间复杂度)或者存储器位置数量(空间复杂度).算法分析是计算复杂度理论的重要组成部分. 本文地址:http://www.cnblogs.com/archimedes/p/python-datastruct-algorithm-analysis.html,转…
python——常见排序算法解析   算法是程序员的灵魂. 下面的博文是我整理的感觉还不错的算法实现 原理的理解是最重要的,我会常回来看看,并坚持每天刷leetcode 本篇主要实现九(八)大排序算法,分别是冒泡排序,插入排序,选择排序,希尔排序,归并排序,快速排序,堆排序,计数排序.希望大家回顾知识的时候也能从我的这篇文章得到帮助. 概述 十种常见排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排…
一步步教你轻松学KNN模型算法( 白宁超 2018年7月24日08:52:16 ) 导读:机器学习算法中KNN属于比较简单的典型算法,既可以做聚类又可以做分类使用.本文通过一个模拟的实际案例进行讲解.整个流程包括:采集数据.数据格式化处理.数据分析.数据归一化处理.构造算法模型.评估算法模型和算法模型的应用.(本文原创,转载必须注明出处: 一步步教你轻松学KNN模型算法) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学习:一步步教你轻松学…
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有200个样本. ♦每个样本保持在一个txt文件中. ♦手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下: 数据集压缩包解压后有两个目录:(将这两个目录文件夹拷贝的项目路径下E:/KNNCase/digits/) ♦目录trainingDigits…
第2章 Python语法基础,IPython和Jupyter Notebooks 当我在2011年和2012年写作本书的第一版时,可用的学习Python数据分析的资源很少.这部分上是一个鸡和蛋的问题:我们现在使用的库,比如pandas.scikit-learn和statsmodels,那时相对来说并不成熟.2017年,数据科学.数据分析和机器学习的资源已经很多,原来通用的科学计算拓展到了计算机科学家.物理学家和其它研究领域的工作人员.学习Python和成为软件工程师的优秀书籍也有了. 因为这本书…
python是一种解释型.面向对象的.带有动态语义的高级程序语言. 一.下载安装 官网下载地址:https://www.python.org/downloads 下载后执行安装文件,按照默认安装顺序安装即可.然后可以在命令行中输入python,检查是否已安装成功,如果出现以下内容,则证明安装成功. 二.编译器 支持python的编译器是很多的,但编译器的选择,根据个人习惯,没有最好的,只有最适合自己的,编译器的选择可参考下面这两个链接的内容. 开源中国:Python开发工具 知乎:有哪些值得推荐…
Python数据挖掘——基础知识 数据挖掘又称从数据中 挖掘知识.知识提取.数据/模式分析 即为:从数据中发现知识的过程 1.数据清理 (消除噪声,删除不一致数据) 2.数据集成 (多种数据源 组合在一起) 3.数据选择 (从数据库中提取和分析任务相关的数据) 4.数据变换 (通过汇总或聚焦操作,把数据变换和统一成适合挖掘的形式) 5.数据挖掘 (基本步骤,使用智能化方法提取数据) 6.模式评估 (根据某种兴趣度量,识别代表知识的真正的有趣模式) 7.知识表示 (使用可视化和知识表示技术,向用户…
#『Python基础-1 』 编程语言Python的基础背景知识 目录: 1.编程语言 1.1 什么是编程语言 1.2 编程语言的种类 1.3 常见的编程语言 1.4 编译型语言和解释型语言的对比 2.Python背景知识 2.1 Python发展历程 2.2 Python的优缺点 2.3 Python的应用 2.4 Python解释器的种类 2.5 Python的执行过程 2.6 Python版本(2.x和3.x) 1.编程语言 1.1 什么是编程语言 编程语言(programming lan…
c语言基础算法总结 1  初学者学习任何一门编程语言都必须要明确,重点是学习编程方法和编程思路,不是学习语法规则,语法规则是为编程实现提供服务和支持.所以只要认真的掌握了c语言编程方法,在学习其它的语言时注重其语法规则,则能比较快速的掌握.企业在招聘的程序员主要考察是其编程能力,是否掌握一般的编程方法或者思维,是否具备开发项目的能力.根据企业面试题目的要求对c语言中的常用算法进行了总结,希望能帮助大家顺利的通过企业的面试. 基础的算法共计涉及到十几种,下面分别给予说明. 1.求和值和平均值. 在…
1. 基于实例的学习算法 0x1:数据挖掘的一些相关知识脉络 本文是一篇介绍K近邻数据挖掘算法的文章,而所谓数据挖掘,就是讨论如何在数据中寻找模式的一门学科. 其实人类的科学技术发展的历史,就一直伴随着数据挖掘,人们一直在试图中数据中寻找模式, 猎人在动物迁徙的行为中寻找模式 农夫在庄稼的生长中寻找模式 政客在选民的意见上寻找模式 恋人在对方的反应中寻找模式 企业家的工作是要辨别出机会,寻找出那些可以转变为有利可图的生意的行为中的一些模式,也即所谓的成功的模式,并且利用这些机会 科学家的工作是理…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 导入必要的包 import numpy as np import matplotlib.pyplot as plt im…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程总目录 Python机器学习基础教程 引子 先导入必要的包 import numpy as np import matplotlib.pyplot as plt i…
介绍 本系列教程基本就是搬运<Python机器学习基础教程>里面的实例. Github仓库 使用 jupyternote book 是一个很好的快速构建代码的选择,本系列教程都能在我的Github仓库找到对应的 jupyter notebook . Github仓库:https://github.com/Holy-Shine/Introduciton-2-ML-with-Python-notebook 系列教程入口 Python机器学习基础教程-第1章-鸢尾花的例子KNN Python机器学习…
python 经典排序算法 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存.常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等.用一张图概括: 关于时间复杂度: 平方阶 (O(n2)) 排序 各类简单排序:直接插入.直接选择和冒泡排序. 线性对数阶 (O(nlog2n)) 排序 快速排序.堆排序和归并排序. O(n1+§)) 排序,§ 是介…