L23模型微调fine tuning】的更多相关文章

resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型.我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,000万的图像和1,000类的物体.然而,我们平常接触到数据集的规模通常在这两者之间. 假设我们想从图像中识别出不同种类的椅子,然后将购买链接推荐给用户.一种可…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5946041.html 参考网址: http://caffe.berkeleyvision.org/tutorial/interfaces.html http://www.cnblogs.com/denny402/p/5076285.html 1. 如果直接训练时,test.sh中内容如下: ./build/tools/caffe train --solver=examples/XXX/lenet_s…
转自:http://blog.csdn.net/u010402786/article/details/70141261 前言 什么是模型的微调?   使用别人训练好的网络模型进行训练,前提是必须和别人用同一个网络,因为参数是根据网络而来的.当然最后一层是可以修改的,因为我们的数据可能并没有1000类,而只有几类.把最后一层的输出类别和层的名称改一下就可以了.用别人的参数.修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning). 微调时候网…
之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果.在数据量不是很大的情况下,fin…
(转载自:WikiPedia) Fine tuning is a process to take a network model that has already been trained for a given task, and make it perform a second similar task. Assuming the original task is similar to the new task, using a network that has already been d…
Torchvision模型微调 本文将深入探讨如何对 torchvision 模型进行微调和特征提取,所有这些模型都已经预先在1000类的magenet数据集上训练完成.将深入介绍如何使用几个现代的CNN架构,并将直观展示如何微调任意的PyTorch模型.由于每个模型架构是有差异的,因此没有可以在所有场景中使用的微调代码样板.然而,研究人员必须查看现有架构,对每个模型进行自定义调整. 将执行两种类型的转移学习:微调和特征提取. 在微调中,从预训练模型开始,更新新任务的所有模型参数,实质上是重新训…
机器学习策略-多任务学习 Learninig from multiple tasks 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.7 迁移学习 Transfer Learninig 神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中.例如:你已经训练好一个能够识别猫的系统,你利用这些知识或者这些知识的部分去完成更好的 阅读X射线扫描图. 这就是所谓的-- 迁移学习 how-to 假设你已经训练好一个图像识别神经网络,首先用一个神经网络,在(x,y)对上训练,其…
1 误差分析( Carrying out error analysis ) 假设你训练了一个猫的二分类模型,在开发集上的错误率是10%,你想分析这10%的错误率来自哪里,怎么做呢? 先把这些错分的图片找出来,你注意到算法把一些狗错分成了猫,那么你可以收集更多的狗图,或者针对狗的数据来调整你的模型. 在这之前,应该先分析一下,这些错误的图片有多少是把狗错分成猫,如果说100张图片里只有5张是把狗错分成了猫,这个时候需要考虑一下值不值得花这个精力去针对狗做调整工作,它给你带来的性能提升空间太小了,最…
论文分享第三期-2019.03.29 Fully convolutional networks for semantic segmentation,CVPR 2015,FCN 一.全连接层与全局平均池化 在介绍FCN网络的全卷积连接之前,先介绍一下全连接层(fully connected layers)和全局平均池化(global average pooling) 全连接层可以将前面的多层卷积学到的“分布式特征表示”(或者说是高层的鲁棒特征)映射到样本类别空间,与softmax组合具有“分类器”…
在深度学习领域中,最强力的理念之一就是可以将神经网络学习的一种知识应用到另一个独立的任务中. 看上面的例子,首先我们有一个已经完成训练的神经网络,其目标是图像识别,我们有了绿色的1000000张图片并训练了上面的网络. 在完成图像识别后,我们希望将我们的模型用于放射诊断任务,这就是一种迁移. 我们的做法是,把以及训练好的网络的输出层及其权重都删除掉,然后重新随机权重给最后一层,并且让它在放射诊断数据上进行训练. 在使用源数据进行训练的时候,我们把这一过程称为预训练pre-training,其目标…
认识Caffe与Caffe2 目录: 一.Caffe的作者-贾扬清 二.Caffe简介--Caffe.Caffe2.Caffe2Go 三.认识Caffe 四.认识Caffe2 五.认识Caffe2Go     正文: 一.Caffe的作者-贾扬清 Caffe 作者:贾扬清,任Facebook研究科学家,曾在Google Brain工作.在AI领域有数年的研究经历.在UC Berkeley获得计算机科学博士学位,在清华大学获得硕士和本科学位.对两款流行的深度学习框架做过贡献:Caffe的作者,Te…
FineTuning机制的分析 为什么用FineTuning 使用别人训练好的网络模型进行训练,前提是必须和别人用同一个网络,因为参数是根据网络而来的.当然最后一层是可以修改的,因为我们的数据可能并没有1000类,而只有几类.把最后一层的输出类别和层的名称改一下.用别人的参数.修改后的网络和自己的数据进行训练,使得参数适应自己的数据,这样一个过程,通常称之为微调(fine tuning). 也就是说,我们所拥有的数据很小,不足以训练一个网络,这是用别人训练过的参数以及网络训练我们自己的数据的过程…
转自 https://blog.csdn.net/u011961856/article/details/76582669参考自github:https://github.com/thtrieu/darkflow darkflow实现了将darknet翻译成tensorflow,可以用tensorflow加载darknet训练好的模型,并使用tensorflow重新训练,输出tensorflow graph模型,用于移动设备. darkflow需要的依赖库: Python3, tensorflow…
Lesson 3 Structuring Machine Learning Projects 这篇文章其实是 Coursera 上吴恩达老师的深度学习专业课程的第三门课程的课程笔记. 参考了其他人的笔记继续归纳的. 迁移学习 (Transfer learning) 深度学习中,最强大的理念之一就是,有的时候神经网络可以从一个任务中习得知识,并将这些知识应用到另一个独立的任务中. 假如说我们已经训练好一个图像识别神经网络,如猫狗识别器之类的,然后我们让它适应或者说迁移到放射科诊断,类似 X 射线扫…
一.什么是BERT? 没错下图中的小黄人就是文本的主角Bert ,而红色的小红人你应该也听过,他就是ELMo.2018年发布的BERT 是一个 NLP 任务的里程碑式模型,它的发布势必会带来一个 NLP 的新时代.BERT 是一个算法模型,它的出现打破了大量的自然语言处理任务的记录.在 BERT 的论文发布不久后,Google 的研发团队还开放了该模型的代码,并提供了一些在大量数据集上预训练好的算法模型下载方式.Goole 开源这个模型,并提供预训练好的模型,这使得所有人都可以通过它来构建一个涉…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues/873 http://stackoverflow.com/questions/37459812/finetune-a-torch-model https://github.com/torch/nn/blob/master/doc/module.md https://github.com/torch…
前不久,谷歌AI团队新发布的BERT模型,在NLP业内引起巨大反响,认为是NLP领域里程碑式的进步.BERT模型在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩:全部两个衡量指标上全面超越人类,并且还在11种不同NLP测试中创出最佳成绩,包括将GLUE基准推至80.4%(绝对改进7.6%),MultiNLI准确度达到86.7%(绝对改进率5.6%)等.BERT模型是以Transformer编码器来表示,本文在详细介绍BERT模型,Transformer编码器的原理可以参考(https…
1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: 这是一个协议缓冲区(protocol buffer),它完整地保存了Tensorflow图:即所有的变量.操作.集合等.此文件以 .meta 为拓展名. b) Checkpoint 文件: 这是一个二进制文件,包含weights.biases.gradients 和其他所有变量的值.此文件以 .ck…
我的机器学习教程「美团」算法工程师带你入门机器学习   已经开始更新了,欢迎大家订阅~ 任何关于算法.编程.AI行业知识或博客内容的问题,可以随时扫码关注公众号「图灵的猫」,加入”学习小组“,沙雕博主在线答疑~此外,公众号内还有更多AI.算法.编程和大数据知识分享,以及免费的SSR节点和学习资料.其他平台(知乎/B站)也是同名「图灵的猫」,不要迷路哦 ​ ​ ​ ​ BERT模型代码已经发布,可以在我的github: NLP-BERT--Python3.6-pytorch 中下载,请记得star…
本文解读内容是IBN-Net, 笔者最初是在很多行人重识别的库中频繁遇到比如ResNet-ibn这样的模型,所以产生了阅读并研究这篇文章的兴趣,文章全称是: <Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net>.IBN-Net和SENet非常相似: 可以方便地集成到现有网络模型中. 在多个视觉任务中有着出色的表现,如分类.分割. 拿到了比赛第一名,IBN-Net拿到了 WAD 2018 Chall…
本文将利用 TorchVision Faster R-CNN 预训练模型,于 Kaggle: 全球小麦检测 上实践迁移学习中的一种常用技术:微调(fine tuning). 本文相关的 Kaggle Notebooks 可见: TorchVision Faster R-CNN Finetuning TorchVision Faster R-CNN Inference 如果你没有 GPU ,也可于 Kaggle 上在线训练.使用介绍: Use Kaggle Notebooks 那么,我们开始吧 准…
Fine-Tuning微调原理 如何在只有60000张图片的Fashion-MNIST训练数据集中训练模型.ImageNet,这是学术界使用最广泛的大型图像数据集,它拥有1000多万幅图像和1000多个类别的对象.然而,我们经常处理的数据集的大小通常比第一个大,但比第二个小. 假设我们想在图像中识别不同种类的椅子,然后将购买链接推给用户.一种可行的方法是先找到一百张常见的椅子,每把椅子取一千张不同角度的图像,然后在采集到的图像数据集上训练分类模型.虽然这个数据集可能比时尚MNIST大,但是示例的…
1. 模型原理 1.1 论文 Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出TextCNN. 将卷积神经网络CNN应用到文本分类任务,利用多个不同size的kernel来提取句子中的关键信息(类似于多窗口大小的ngram),从而能够更好地捕捉局部相关性. 1.2 网络结构 TextCNN的详细过程原理图如下: TextCNN详细过程: Embedding:第一层是图中最左边的7…
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta…
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很多NLP的任务的最好性能,有些任务还被刷爆了,这个才是关键.另外一点是Bert具备广泛的通用性,就是说绝大部分NLP任务都可以采用类似的两阶段模式直接去提升效果,这…
上一篇使用caffenet的模型微调.但由于caffenet有220M太大,測试速度太慢.因此换为googlenet. 1. 训练 迭代了2800次时死机,大概20分钟. 使用的是2000次的模型. 2. 測试 2.1 測试批处理 在F:\caffe-master170309新建例如以下图文件test-TrafficJamBigData03292057.bat. .\Build\x64\Debug\caffe.exe test --model=models/bvlc_googlenet0329_…
所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入我们自己的分类中. fine tune的好处在于不用完全重新训练模型,从而提高效率,因为一般新训练模型准确率都会从很低的值开始慢慢上升,但是fine tune能够让我们在比较少的迭代次数之后得到一个比较好的效果.在数据量不是很大的情况下,fine tune会是一个比较好的选择.但是如果你希望定义自己的网络结构的话,就需要从头开始了.(其…
在这篇 TensorFlow 教程中,我们将学习如下内容: TensorFlow 模型文件是怎么样的? 如何保存一个 TensorFlow 模型? 如何恢复一个 TensorFlow 模型? 如何使用一个训练好的模型进行修改和微调? 1. TensorFlow 模型文件 在你训练完一个神经网络之后,你可能需要将这个模型保存下来,在后续实验中使用或者进行生产部署.那么,TensorFlow 模型文件长什么样呢?TensorFlow 模型主要包含我们已经训练好的网络设计(计算图)和网络参数.因此,T…
BERT模型总结 前言 ​ BERT是在Google论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding>中被提出的,是一个面向NLP的无监督预训练模型,并在多达11个任务上取得了优秀的结果.这个模型的最大意义是使得NLP任务可以向CV一样使用与训练模型,这极大的方便了一个新的任务开始,因为在NLP领域,海量数据的获取还是有难度的. 模型概述:BERT是一个无监督的NLP与训练模型…