MapReduce-多个Mapper】的更多相关文章

前面在讲InputFormat的时候,讲到了Mapper类是如何利用RecordReader来读取InputSplit中的K-V对的. 这一篇里,开始对Mapper.class的子类进行解读. 先回忆一下.Mapper有setup(),map(),cleanup()和run()四个方法.其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处理工作,cleanup()则是收尾工作如关闭文件或者执行map()后的K-V分发等.run()方法提供了setup->map…
很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻辑确实是正确的,但都是在默认情况下的逻辑.其实如果进行一些客户化的设置,就可以控制了.…
只使用Mapper不使用reduce会大大减少mapreduce程序的运行时间. 有时候程序会往多张hbase表写数据. 所以有如题的需求. 下面给出的代码,不是可以运行的代码,只是展示driver中需要进行的必要项设置,mapper类需要实现的接口,map函数需要的参数以及函数内部的处理方式. 实现过程比较曲折,只贴代码: class Qos2HbaseDriver extends Configured implements Tool { private static Logger logge…
Mapper类4个函数的解析 Mapper有setup(),map(),cleanup()和run()四个方法.其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处理工作,cleanup()则是收尾工作如关闭文件或者执行map()后的K-V分发等.run()方法提供了setup->map->cleanup()的执行模板. 在MapReduce中,Mapper从一个输入分片中读取数据,然后经过Shuffle and Sort阶段,分发数据给Reducer,在M…
前言 前面一篇博文写的是Combiner优化MapReduce执行,也就是使用Combiner在map端执行减少reduce端的计算量. 一.作业的默认配置 MapReduce程序的默认配置 1)概述 在我们的MapReduce程序中有一些默认的配置.所以说当我们程序如果要使用这些默认配置时,可以不用写. 我们的一个MapReduce程序一定会有Mapper和Reducer,但是我们程序中不写的话,它也有默认的Mapper和Reducer. 当我们使用默认的Mapper和Reducer的时候,m…
链接多个MapReduce作业 执行多个数据集的联结 生成Bloom filter   1.链接MapReduce作业   [顺序链接MapReduce作业]   mapreduce-1 | mapreduce-2 | mapreduce-3 | ...   [具有复杂依赖的MapReduce链接]        有时,在复杂数据处理任务中的子任务并不是按顺序运行的,因此它们的MapReduce作业不能按线性方式链接.例如,mapreduce1处理一个数据集,mapreduce2独立处理另一个数…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 欢迎转载 抽空用kettle配置了一个Mapreduce的Word count,发现还是很方便快捷的,废话不多说,进入正题.一.创建Mapper转换 如下图,mapper读取hdfs输入,进行word的切分,输出每个word和整数常量值 1>MapReduce Input:Mapper输入,读取HDFS上的输入文件内容以键值对存储; 2>Spit filed to rows:读取value值以分隔符 &qu…
hadoop版本:1.1.2 一.Mapper类的结构 Mapper类是Job.setInputFormatClass()方法的默认值,Mapper类将输入的键值对原封不动地输出. org.apache.hadoop.mapreduce.Mapper类的结构如下: public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { public class Context extends MapContext<KEYIN,VALUEIN,KEY…
首先,在自己写的MR程序中通过org.apache.hadoop.mapreduce.Job来创建Job.配置好之后通过waitForCompletion方法来提交Job并打印MR执行过程的log.Hadoop版本是1.0.0. public boolean waitForCompletion(boolean verbose ) throws IOException, InterruptedException, ClassNotFoundException { if (state == JobS…
这是搭建hadoop环境后的第一个MapReduce程序: 基于hadoop streaming的python的脚本: 1 map.py文件,把文本的内容划分成单词: #!/usr/bin/pythonimport sys for line in sys.stdin:    line = line.strip()    words = line.split()    for word in words:        print('%s\t%s' % (word, 1)) 2 reduce文件,…