VideoCapture和cvCapture其实是一样的,你可以去看看源码,VideoCapture其实在内部调用了cvCapture.这是不同 版本的opencv导致的.我接触到的opencv有过一次大升级,函数名有很多变化,其实是向着面向对象的方向发展了,也就是开始重c++而轻c了.cvLoadImage和imread返回值略有差异,过去的opencv处理图像倾向使用IplImage类型.升级后更倾向于将图像.矩阵等等都统一使用Mat类型上.差别不大.你看头文件也能发现imread位于hig…
参考:http://www.cnblogs.com/tornadomeet/archive/2012/04/29/2476277.html…
OpenCV中Mat操作clone() 与copyto()的区别 // Mat is basically a class with two data parts: the matrix header and //a pointer to the matrix containing the pixel values #include <iostream> #include <highgui.h> using namespace std ; using namespace cv ; i…
使用opencv-python一段时间了,因为之前没有大量接触过c++下的opencv,在网上看c++的一些程序想改成python遇到了不少坑,正好在这里总结一下. 1.opencv 中x,y,height, width,rows,cols 的关系(转自http://blog.csdn.net/ikerpeng/article/details/41846259) opencv中图像的x,y 坐标以及 height, width,rows,cols 他们的关系经常混淆. rows 其实就是行,一行…
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志  cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二…
转载请注明出处! ! ! http://blog.csdn.net/zhonghuan1992 背景剪除和OpenCV中的实现 背景与前景都是相对的概念.以快速公路为例:有时我们对快速公路上来来往往的汽车感兴趣,这时汽车是前景.而路面以及周围的环境是背景.有时我们只对闯入快速公路的行人感兴趣,这时闯入者是前景,而包含汽车之类的其它东西又成了背景.背景剪除是使用很广泛的摄像头视频中探測移动的物体.这样的在不同的帧中检測移动的物体叫做背景模型,事实上背景剪除也是前景检測. 一个强劲的背景剪除算法应当…
说明:本文所有算法的涉及到的优化均指在PC上进行的,对于其他构架是否合适未知,请自行试验. Box Filter,最经典的一种领域操作,在无数的场合中都有着广泛的应用,作为一个很基础的函数,其性能的好坏也直接影响着其他相关函数的性能,最典型莫如现在很好的EPF滤波器:GuideFilter.因此其优化的档次和程度是非常重要的,网络上有很多相关的代码和博客对该算法进行讲解和优化,提出了不少O(1)算法,但所谓的0(1)算法也有优劣之分,0(1)只是表示执行时间和某个参数无关,但本身的耗时还是有区别…
三种匹配算法比较 BM算法: 该算法代码: view plaincopy to clipboardprint? CvStereoBMState *BMState = cvCreateStereoBMState();   int SADWindowSize=15;    BMState->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9;   BMState->minDisparity = 0;   BMState->numb…
经过2天的努力终于算是大概弄清楚了opencv中的vs框架是大概是如何工作的了,下面贴一下我自己写的代码注释.非常详细.对初学者有帮助.尤其详细分析了RunBlobTrackingAuto()函数,在看注释之前应该首先大概了解一下 Blob Tracking Tests和Blob Tracking Modules的说明文档.这样比较容易理解.说明文档的位置在  opencv的安装位置的opencv\doc\vidsurv 代码注释为本人原创,转载请注明原为地址:http://blog.csdn.…
部分 IIOpenCV 中的 Gui 特性 OpenCV-Python 中文教程(搬运)目录 4 图片 目标 • 在这里你将学会怎样读入一幅图像,怎样显示一幅图像,以及如何保存一幅图像 • 你将要学习如下函数:cv2.imread(),cv2.imshow(),cv2.imwrite() • 如果你愿意的话,我会叫你如何使用 Matplotlib 显示一幅图片 4.1 读入图像 使用函数 cv2.imread() 读入图像.这幅图像应该在此程序的工作路径,或者给函数提供完整路径,第二个参数是要告…
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录   13 颜色空间转换 目标 • 你将学习如何对图像进行颜色空间转换,比如从 BGR 到灰度图,或者从BGR 到 HSV 等. • 我没还要创建一个程序用来从一幅图像中获取某个特定颜色的物体. • 我们将要学习的函数有:cv2.cvtColor(),cv2.inRange() 等. 13.1 转换颜色空间 在 OpenCV 中有超过 150 中进行颜色空间转换的方法.但是你以后就会.发现我们经常用到的也就两种…
部分 VI视频分析 OpenCV-Python 中文教程(搬运)目录 39 Meanshift 和 和 Camshift 目标 • 本节我们要学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象39.1 Meanshift Meanshift 算法的基本原理是和很简单的.假设我们有一堆点(比如直方图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗口移动到最大灰度密度处(或者是点最多的地方).如下图所示: 初始窗口是蓝色的“C1”,它的圆心为蓝色方…
部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoising(),cv2.fastNlMeansDenoisingColored()等原理 在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑,中值平滑等,当噪声比较小时这些技术的效果都是很好的.在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素.简单来说,像素级别的…
cv::Matdepth/dims/channels/step/data/elemSizeThe class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store (Mat类的对象用于表示一个多维度的单通道或者多通道稠密数组,它可以用来存储以下东西)real or complex-valued vectors or matrice…
opencv3中图形存储基本为Mat格式,如果我们想获取像素点的灰度值或者RGB值,可以通过image.at<uchar>(i,j)的方式轻松获取. Mat类中的at方法对于获取图像矩阵某点的RGB值或者改变某点的值很方便,对于单通道的图像,则可以使用: image.at<uchar>(i, j) 其中有一个要注意的地方是i对应的是点的y坐标,j对应的是点的x坐标,而不是我们习惯的(x,y) 来获取或改变该点的值,而RGB通道的则可以使用: image.at<Vec3b>…
接OpenCV中Kinect的使用(1),主要讲述OpenCV中关于Kinect接口(类 VideoCapture )的一些使用介绍. 类 VideoCapture 支持Kinect传感器.使用 VideoCapture 里的接口,可以从Kinect获取深度图,RGB图像和其他格式的输出,主要包括: 1)来自深度传感器的数据: OPENNI_DEPTH_MAP - 以毫米为单位的深度值 (CV_16UC1) OPENNI_POINT_CLOUD_MAP - 以米为单位的XYZ点云 (CV_32F…
转载请注明出处! ! ! http://blog.csdn.net/zhonghuan1992 光流(optical flow)和openCV中实现 光流的概念:        是Gibson在1950年首先提出来的. 它是空间运动物体在观察成像平面上的像素运动的瞬时速度.是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的相应关系,从而计算出相邻帧之间物体的运动信息的一种方法. 一般而言.光流是因为场景中前景目标本身的移动.相机的运动,或者两者的共同运动所产…
视频画面本质上是由一帧一帧的连续图像组成的,播放视频其实就是在播放窗口把一系列连续图像按一定的时间间隔一幅幅贴上去实现的. 人眼在连续图像的刷新最少达到每秒24帧的时候,就分辨不出来图像间的闪动了,使人感觉呈现出来的是连续的画面,视频的播放就是利用了这一点.我们知道,电影被称为"24帧的艺术",意思就是电影画面每秒刷新24帧,即每秒显示24副图像,它的帧率(Frames per Second,简称:FPS)为24. 一般情况下帧率要大于等于24,以下先测试一下两个视频文件的帧率,一个是…
在OpenCV中Mat.CvMat和IplImage类型都可以代表和显示图像.IplImage由CvMat派生,而CvMat由CvArr派生即CvArr -> CvMat -> IplImage,Mat类型则是C++版本的矩阵类型(CvArr用作函数的参数,无论传入的是CvMat或IplImage,内部都是按CvMat处理).其中Mat类型侧重于计算,数学性较高,OpenCV对Mat类型的计算也进行了优化:而CvMat和IplImage类型更侧重于"图像",OpenCV对其…
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: CV_TM_SQDIFF 平方差匹配法:计算图像像素间的距离之和,最好的匹配是0,值越大,是目标的概率就越低.     CV_TM_CCORR 相关匹配法:一种乘法操作:数值从小到大,匹配概率越来越高.     CV_TM_CCOEFF 相关系数匹配法:从-1到1,匹配概率越来越高.     CV_T…
Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出. Mean shift将特征空间视为先验概率密度函数,那么输入就被视为是一组满足某种概率分布的样本点,这样一来,特征空间中数据最密集的地方,对应于概率密度最大的地方,且概率密度的质心就可以被视为是概率密度函数的局部最优值,也就是要求的聚类中心.对于每一个样本点,计算以它为中心…
最近一段时间学习并做的都是对图像进行处理,其实自己也是新手,各种尝试,所以我这个门外汉想总结一下自己学习的东西,图像处理的流程.但是动起笔来想总结,一下却不知道自己要写什么,那就把自己做过的相似图片搜索的流程整理一下,想到什么说什么吧. 首先在进行图片灰度化处理之前,我觉得有必要了解一下为什么要进行灰度化处理. 图像灰度化的目的是什么? 将彩色图像转化为灰度图像的过程是图像的灰度化处理.彩色图像中的每个像素的颜色由R,G,B三个分量决定,而每个分量中可取值0-255,这样一个像素点可以有1600…
颜色空间总结 RGB.HSV.YUV 什么是颜色 Wiki是这样说的:颜色或色彩是通过眼.脑和我们的生活经验所产生的一种对光的视觉效应.嗯,简单点说,颜色就是人对光的一种感觉,由大脑产生的一种感觉.感觉是一个很主观的东西,你怎么确定你看到的红色和我看到的是一样的呢?这个视频解释的很不错.我们需要先假设正常人对于同一种光产生的感觉基本是一致的,讨论才能继续下去. 人的视网膜上布满了感光细胞,当有光线传入人眼时,这些细胞就会将刺激转化为视神经的电信号,最终在大脑得到解释.视网膜上有两类感光细胞:视锥…
背景分割器BackgroundSubtractor是专门用来视频分析的,会对视频中的每一帧进行"学习",比较,计算阴影,排除检测图像的阴影区域,按照时间推移的方法提高运动分析的结果.而且BackgroundSubtractor不仅可以用于背景分割,而且还可以提高背景检测的效果.在opencv中有三种分割器:KNN,MOG2,GMG. 通过mog2实现 import numpy as np import cv2 cap=cv2.VideoCapture(1) mog = cv2.crea…
转自:https://blog.csdn.net/u012566751/article/details/77046445 一篇很好的介绍threshold文章: 图像的二值化就是将图像上的像素点的灰度值设置为0或255,这样将使整个图像呈现出明显的黑白效果.在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓.OpenCV中提供了函数cv::threshold();   注意:作者采用OpenCV 3.0.0   函数原型   参数说明 src…
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理. Mat类型可用于直接存储图像信息,通过函数imread.imwrite.imshow等实现(与Matlab中的函数相…
JDBC中的Statement和PreparedStatement的区别  …
最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matching代码仿真.Andreas提供的源码中没有使用opencv,导致我一时无法适应如何显示处理的中间结果.将对应的库加载后,仿照采集相机图像数据的方式,从内存中读取对应图像到IplImage类型指针指定的内存空间,方便代码的调试和效果观测.其中用到的部分资料如下. *******************…
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_eWeRu9p9GhZd49WJ1bEOB7VluQdBdRKeehAO2Q3B7RatTXDruq-M9cR-W2yqATerDlIU1T3whYoyQfi http://www.cvchina.info/2011/07/04/whats-orb/ http://www.bubuko.com/in…
LINQ语句中的.AsEnumerable() 和 .AsQueryable()的区别 在写LINQ语句的时候,往往会看到.AsEnumerable() 和 .AsQueryable() .例如: string strcon = "Data Source=.\\SQLEXPRESS;Initial Catalog=Db_Example;Persist Security Info=True;User ID=sa;Password=sa"; SqlConnection con = new…