HDU 6470:Count(矩阵快速幂)】的更多相关文章

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 写这道题是为了让自己不要忘记矩阵快速幂如何推出矩阵式子的. 注意 代码是TLE的!! #include<stdio.h> #include<string.h> #define mem(a, b) memset(a, b, sizeof(a)) typedef long long ll; ; ll n; struct Matrix { ll a[][]; }A, res, temp…
HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的合法串的个数. 首先不难通过枚举发现F(0) = 0, F(1) =2, F(3) = 6, F(4) = 9, F(5) = 15.然后引用网上如何求解递推公式的详细解释: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个…
HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdio> using namespace std; long long pow_mod(long long a, long long p, long long mod) { if (p == 0) return 1; long long ans = pow_mod(a, p / 2, mod); ans =…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点点配吧 我们会发现中间6*6的矩阵是个常数矩阵,则可以化为A=B^(N-2)*C(n-2次幂是因为我们求解是从N=3开始的),根据矩阵快速幂算出B^(N-2)次幂即可以了 矩阵快速幂的时间复杂度是logn 注意:我们中间构造的矩阵必须是一个方阵,矩阵快速幂的难点就在于构建中间的方阵 比如矩阵A,B,…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题,之前写过,见这里:http://blog.csdn.net/just_sort/article/details/73650284 然后推出前几项发现是有规律的,要问如何发现规律,不妨丢到std跑一跑... #include<bits/stdc++.h> using namespace std;…
How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4838    Accepted Submission(s): 1900 Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看…
http://acm.hdu.edu.cn/showproblem.php?pid=6395 Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 1475    Accepted Submission(s): 539 Problem Description Let us define a sequence as belo…
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. 在这种限制下其实只有 N−1N − 1N−1 个位置可以切. 对于一种切的方案,假如切完后每块的宽度分别是:w1,w2,w3,...,wk(∑wi=N)w_1, w_2, w_3, ..., w_k(\sum w_i = N)w1​,w2​,w3​,...,wk​(∑wi​=N),那么该种方案对应…
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行)再想交的时候已经开始hack了 真是TMD.......,然后rejudge完了之后再HDOJ上瞬间AC,真是...狗了,只能是自己手残 手残,手残,手残(重要的事情说三遍) 思路 :(杭电官方题解,我就不班门弄斧了..QAQ) 考虑dpdp,用f_{t,x}f​t,x​​表示第tt秒在xx的概率,…
emmmmm..就是矩阵快速幂,直接附代码: #include <cstdio> using namespace std; ; ; struct Matrix { int m[maxn][maxn]; }ans,res; int n; Matrix mul(Matrix a,Matrix b) { Matrix tmp; ; i <= n; i++) ; j <= n; j++) tmp.m[i][j] = ; ; i <= n; i++) ; j <= n; j++)…
Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 1951    Accepted Submission(s): 750 Problem Description Let us define a sequence as below ⎧⎩⎨⎪⎪⎪⎪⎪⎪F1F2Fn===ABC⋅Fn−2+D⋅Fn−1+⌊Pn⌋ Your…
;i<=n;i++) { )ans=(ans*+)%m; %m; } 给定n,m.让你用O(log(n))以下时间算出ans. 打表,推出 ans[i] = 2^(i-1) + f[i-2] 故 i奇数:ans[i] = 2^(i-1) + 2^(i-3) ... + 1; i偶数:ans[i] = 2^(i-1) + 2^(i-3) ... + 2; 故可以用等比数列求和公式. 公式涉及除法.我也没弄懂为啥不能用逆元,貌似说是啥逆元可能不存在. 所以a/b % m == a%(b*m) / b…
number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 175    Accepted Submission(s): 119 暴力发现当4 12 33 88 232 和斐波那契数列对比  答案为 第2*k+3个数减1 直接用矩阵快速幂求的F[2*k+3]  然后减1 A=1,B=0; 然后矩阵快速幂2*k…
Problem Description We define a sequence F: ⋅ F0=0,F1=1;⋅ Fn=Fn−1+Fn−2 (n≥2). Give you an integer k, if a positive number n can be expressed byn=Fa1+Fa2+...+Fak where 0≤a1≤a2≤⋯≤ak, this positive number is mjf−good. Otherwise, this positive number is …
题目链接:https://vjudge.net/problem/HDU-5950 思路: 构造矩阵,然后利用矩阵快速幂. 1 #include <bits/stdc++.h> 2 #include <time.h> 3 #include <set> 4 #include <map> 5 #include <stack> 6 #include <cmath> 7 #include <queue> 8 #include <…
http://acm.hdu.edu.cn/showproblem.php?pid=5015 需要构造一个 n+2 维的矩阵. 就是要增加一维去维护2333这样的序列. 可以发现 2333 = 233*10 + 3 所以增加了一维就 是1, 然后就可以全部转移了. 10 0 0 0 0 ... 1                                                                                                   1…
题目链接 给一个长度为n的字符串, 每个字符可以使f或m. 问你不包含子串fmf以及fff的字符串数量有多少. 令0表示mm结尾, 1表示mf, 2表示ff, 3表示fm. 那么 f(n+1, 0) = f(n, 0) + f(n, 3) f(n+1, 1) = f(n, 0) f(n+1, 2) = f(n, 1) f(n+1, 3) = f(n, 1) + f(n, 2) 所以构造出矩阵 {1, 0, 0, 1} {1, 0, 0, 0} {0, 1, 0, 0} {0, 1, 1, 0}…
题目链接 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 87    Accepted Submission(s): 39 Problem Description One day, Alice and Bob felt bored again, Bob knows Alice is a…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/7398272.html 先考虑dp求01串的不同子序列的个数. dp[i][j]表示用前i个字符组成的以j为结尾的01串个数. 如果第i个字符为0,则dp[i][0] = dp[i-1][1] + dp[i-1][0] + 1,dp[i][1] = dp[i-1][1] 如果第i个字符为1,则dp[i][1…
题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; h[2]=b; h[3]=b+h[2]*c+h[1]; h[n]=b+h[n-1]*c+h[n-1]. h[n]式三个数之和的递推式,所以就可以转化为3x3的矩阵与3x1的矩阵相乘.于是 h[n] c  1  b h[n-1] h[n-1] = 1  0  0 * h[n-2] 1       0…
官方题解: 观察递推式我们可以发现,所有的fi​​都是a的幂次,所以我们可以对f​i​​取一个以a为底的log,g​i​​=log​a​​ f​i​​ 那么递推式变g​i​​=b+c∗g​i−1​​+g​i−2​​,这个式子可以矩阵乘法 这题有一个小trick,注意a mod p=0的情况. 分析:排除了a mod p=0的情况,幂次可以对(p-1)取模,这是由于离散对数定理 相关定理请查阅 算导 吐槽:比赛的时候就是被a mod p=0这种情况给hack掉了,我太弱了 #include <st…
hdu6470 Count #include <bits/stdc++.h> using namespace std; typedef long long ll; , mod = ; struct MAT { ll a[maxn][maxn]; MAT(){ memset(a,,sizeof(a)); } MAT operator*(MAT p) { MAT res; ; i < maxn; i++) ; j < maxn; j++) ; k < maxn; k++) res…
Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have  4=1+1+1+…
Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 1424    Accepted Submission(s): 469 Problem Description     Holion August will eat every thing he has found. Now there are many foods,bu…
Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2362    Accepted Submission(s): 937 Problem Description Define f(n) as the number of ways to perform n in format of the sum of some posi…
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 301    Accepted Submission(s): 127 Problem Description Farmer John有n头奶牛.某天奶牛想要数一数有多少头奶牛…
Count Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1187    Accepted Submission(s): 433 Problem Description Farmer John有n头奶牛.某天奶牛想要数一数有多少头奶牛,以一种特殊的方式:第一头奶牛为1号,第二头奶牛为2号,第三头奶牛之后,假如当前奶牛是第n头,那么他的编…
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出来了 这里用的是2维 vector #include<iostream> #include<cstdio> #include<vector> using namespace std; typedef vector<int>vec; typedef vector&…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ 解题思路: 题目挺吓人的.先把完整组合数+Fibonacci展开来. 利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数: $S(0)=f(0)$ $S(1)=f(2)$ $S(2)=f(4)$ $S(n)=f(2*n)$ 这样矩阵快速幂就可以了,特判$n=0$时的情况. 快速幂矩阵…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个环可以取下或放上,cost=1.求最小cost.MOD 200907. 解题思路: 递推公式 题目意思非常无聊,感觉是YY的. 设$dp[i]$为取第i个环时的总cost. $dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的. 从i=3开始,由于条件对最后的环限制最大,所以从最后一…