qwq纪念AC450 一开始想这个题想复杂了. 首先,正解的做法是比较麻烦的. qwqq 那么就不如来一点暴力的东西,看到平面上点的距离的题,不难想到\(KD-Tree\) 我们用类似平面最近点对那个题一样的维护方式,对于一个子树内部,分别维护每一个维度的最大值和最小值,还有半径的最大值. 然后\(sort\)一遍,从半径大到小依次\(query\),每次\(query\)的时候,对于当前点,合法的条件是他和目标点的距离要小于等于两个圆的半径的和. 那么对于子树的估价函数,我们默认如果当前目标点…
[LG4631][APIO2018]Circle selection 选圆圈 题面 洛谷 题解 用\(kdt\)乱搞剪枝. 维护每个圆在\(x.y\)轴的坐标范围 相当于维护一个矩形的坐标范围为\([x-r,x+r],[y-r,y+r]\) 可以减小搜索范围 然后再判断一下一个圆是否在当前搜索的矩形内,不在就剪枝 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring&g…
题面 自己去\(LOJ\)上找 Sol 直接排序然后\(KDTree\)查询 然后发现\(TLE\)了 然后把点旋转一下,就过了.. # include <bits/stdc++.h> # define IL inline # define RG register # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; IL int Input(){ RG int x = 0,…
Luogu 题目描述 在平面上,有 \(n\) 个圆,记为 \(c_1, c_2,...,c_n\) .我们尝试对这些圆运行这个算法: \(1\).找到这些圆中半径最大的.如果有多个半径最大的圆,选择编号最小的.记为\(c_i\). \(2\).删除\(c_i\)及与其有交集的所有圆.两个圆有交集当且仅当平面上存在一个点,这个点同时在这两个圆的圆周上或圆内.(原文直译:如果平面上存在一个点被这两个圆所包含,我们称这两个圆有交集.一个点被一个圆包含,当且仅当它位于圆内或圆周上.) \(3\).重复…
Description 给出 \(n\) 个圆 \((x_i,y_i,r_i)\) 每次重复以下步骤: 找出半径最大的圆,并删除与这个圆相交的圆 求出每一个圆是被哪个圆删除的 Solution \(kd-tree\) 搞一下 维护能够围住所有圆的最小矩形 然后模拟题意,枚举半径最大的圆 查询时就判断询问的圆是否与这个矩形有交,有交就递归下去 #include<bits/stdc++.h> #define sqr(x) ((x)*(x)) using namespace std; templat…
传送门 那个当前半径最大的圆可以用堆维护.这道题一个想法就是优化找和当前圆有交的圆的过程.考虑对于所有圆心建KD-tree,然后在树上遍历的找这样的点.只要某个点子树内的点构成的矩形区域到当前圆心的最近距离\(>2\)倍半径就不用找了 然而在loj上过不去,这时就可以用一个很鸡贼的优化,对于所有点绕原点旋转一定角度,然后就跑的过了(可能是全在一条直线上建KD-tree会出锅(雾)).稍微注意精度误差就行了 #include<algorithm> #include<iostream&…
题目:https://loj.ac/problem/2586 只会 19 分的暴力. y 都相等,仍然按直径从大到小做.如果当前圆没有被删除,那么用线段树把 [ x-r , x+r ] 都打上它的标记. 看当前圆有没有被删除,只要看 x-r 和 x+r 两个位置上的标记就行了.因为被删除的话当前圆的直径更小,有相交的话, x-r 或 x+r 一定在对方内部.可以 x-r 和 x+r 分别在两个圆内部,看看哪个更大即可. #include<cstdio> #include<cstring&…
[洛谷5439][XR-2]永恒(树链剖分,线段树) 题面 洛谷 题解 首先两个点的\(LCP\)就是\(Trie\)树上的\(LCA\)的深度. 考虑一对点的贡献,如果这两个点不具有祖先关系,那么这对点被计算的次数是\(size[u]*size[v]\)次.否则具有祖先关系,假设\(u\)是\(v\)祖先,则是\(size[v]*(n-size[u]+1)\)次. 于是先考虑所有点不具有祖先关系,再减去有祖先关系的情况就好了. 然后现在知道了统计的次数,还需要知道统计的值,显然这个\(len\…
题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双,点双内所有点一定都可以作为中介点 那么我们将方点赋值为点双大小,为了去重,剩余点赋值\(-1\) 答案就是任意两点间权值和之和 我们只需枚举每个点被经过多少次,这就很容易计算了 复杂度\(O(n)\) #include<algorithm> #include<iostream> #i…
https://www.zybuluo.com/ysner/note/1257597 题面 在平面上,有\(n\)个圆,记为\(c_1,c_2,...,c_n\).我们尝试对这些圆运行这个算法: 找到这些圆中半径最大的.如果有多个半径最大的圆,选择编号最小的.记为\(c_i\). 删除\(c_i\)及与其相交的所有圆. 重复上面两个步骤直到所有的圆都被删除. 当\(c_i\)被删除时,若循环中第\(1\)步选择的圆是\(c_j\),我们说\(c_i\)被\(c_j\)删除.对于每个圆,求出它是被…
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上差分的小套路--每一个点到根的前缀和还是很好维护对吧. 询问\(u,v\)的时候,我们可以知道\(size[root,u]\)和\(size[root,v]\)的和. 但我们需要的只是一条路径,\(lca(u,v)\)以上的全不要,\(lca(u,v)\)也只要算一次. 于是用\(size[root…
To 洛谷.2982 慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N move from the barn to her private pasture. The pastures are organized as a tree, with the barn being on pasture 1. Exactly N-1 cow…
传送门 BZOJ 然而是权限题 洛谷 Solution 发现题目给出的一些规律,emm,如果我们新凑出来的一个数,那么后面一个数一定是\(sum+1\). 于是就可以主席树随便维护了! 代码实现 #include<bits/stdc++.h> using namespace std; inline int gi(){int x;scanf("%d",&x);return x;} const int N=100010; int rt[N],tot; int n,a[N…
洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上差分的小套路--每一个点到根的前缀和还是很好维护对吧. 询问\(u,v\)的时候,我们可以知道\(size[root,u]\)和\(size[root,v]\)的和. 但我们需要的只是一条路径,\(lca(u,v)\)以上的全不要,\(lca(u,v)\)也只要算一次. 于是用\(size[root…
一道技巧性非常强的计数题,历年WC出得最好(同时可能是比较简单)的题目之一. 题目传送门:洛谷P5206. 题意简述: 给定 \(n, y\). 一张图有 \(|V| = n\) 个点.对于两棵树 \(T_1=G(V, E_1)\) 和 \(T_2=G(V, E_2)\),定义这两棵树的权值 \(F(E_1, E_2)\) 为 \(y\) 的 \(G'=(V,E_1\cap E_2)\) 的联通块个数次方. 即 \(F(E_1, E_2) = y^{n - |E_1\cap E_2|}\)(因为…
P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题.你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令. 对于每一个询问指令,你必须输出正确的回答. 输入输出格式 输…
题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内,那就把它用并查集并起来.最后对于一个询问,直接用并查集找就好了. 但是因为有撤销操作,所以在并查集合并的时候,我们将需要合并的两个点放进栈中,最后栈序撤销,所以只能考虑按秩合并而不能路径压缩. #include <map> #include <vector> #include <…
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情况 P4606 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define…
洛谷P2633/bzoj2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文. 输入输出格式 输入格式: 第一行两个整数N,M. 第二行有N个整数,其中第i个整数表示点i的权值. 后面N-1行每行两个整数(x,y),表示点x到点y有一条边. 最后M行每行两个整数(u,v,k),表示一组询问. 输…
洛谷传送门,BZOJ传送门 树网的核 Description 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(treenetwork),其中V, E分别表示结点与边的集合,W表示各边长度的集合,并设T有n个结点. 路径:树网中任何两结点a,b都存在唯一的一条简单路径,用d(a,b)表示以a,b为端点的路径的长度,它是该路径上各边长度之和.我们称d(a,b)为a,b两结点间的距离. 一点v到一条路径P的距离为该点与P上的最近的结点的距离:…
洛谷传送门,BZOJ传送门 秘密消息Secret Message Description     贝茜正在领导奶牛们逃跑.为了联络,奶牛们互相发送秘密信息.     信息是二进制的,共有M(1≤M≤50000)条.反间谍能力很强的约翰已经部分拦截了这些信息,知道了第i条二进制信息的前bi(l<bi≤10000)位.他同时知道,奶牛使用N(1≤N≤50000)条密码.但是,他仅仅了解第J条密码的前cj(1≤cj≤10000)位.     对于每条密码J,他想知道有多少截得的信息能够和它匹配.也就是…
题面 传送门 题解 代码不就百来行么也不算很长丫 虽然这题随机化贪心就可以过而且速度和正解差不多不过我们还是要好好学正解 前置芝士 边分治 米娜应该都知道点分治是个什么东西,而边分治,顾名思义就是对边进行分治,即每次选出一条"子树中点的个数的最大值最小"的边,处理所有经过这条边的路径的贡献,然后割掉这条边之后对子树递归下去就好了 然而出题人给你一个菊花图就能把你卡得不要不要的 我们发现上述策略在一个二叉树上是最优的,因为割掉边之后左右子树大小都会变为原来的一半 于是这里就需要多叉树转二…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3295 题目--洛谷3157:https://www.luogu.org/problemnew/show/P3157 题目--洛谷3193:https://www.luogu.org/problemnew/show/P1393 1.树状数组套权值线段树 有点卡空间.线段树节点的*100怎么算? #include<iostream> #include<cstdio> #inclu…
二分mid,然后用1~mid的操作在差分序列上加减,最后把差分序列前缀和起来,看是否有有超过初始r值的 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N=1e6,INF=1e9; long long n,m,a[N],d[N],x[N],y[N],s[N]; int read() { int r=…
题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy线段树分治做法(不知道线段树分治?推荐一个伪模板题BZOJ4025二分图事实上这个链接是指向我的博客的).把每次操作(加边或查询)看做一个时刻,一条边存在的区间就是它加入后没有被查询的时间区间的并.于是用可撤销并查集维护一下连通块大小即可. 代码: #include <cstdio> #inclu…
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然发现了一个0提交0通过的题目,然后就引发了整个机房的兴趣,,然后,,就变成了16提交7通过,, 初看上去这题目就是记忆化搜索,但是环的存在使得普通的记忆化会导致漏解,继续观察发现整张图为n个点n条边,即是多个基环外向树,使用tarjan找到图中的环,显然可知,对于环上一点,能取到的最大值是环的长度,…
洛谷题面传送门 一道笛卡尔树的 hot tea. 首先我们考虑一个非常 naive 的区间 DP:\(dp_{l,r}\) 表示区间 \([l,r]\) 的答案,那么我们考虑求出 \([l,r]\) 中最大值的位置所在的位置 \(p\),那么如果我们选取的 meeting 的位置 \(\le p\),那么显然 \([p+1,r]\) 部分的贡献都是 \(a_p\),\([l,p]\) 部分的总共先最小是 \(dp_{l,p}\),最优代价为 \(dp_{l,p}+a_p·(r-p)\),否则 \…
n个数中选取k个数,判断这k个数的和是否为质数. 在dfs函数中的状态有:选了几个数,选的数的和,上一个选的数的位置: 试除法判断素数即可: 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=5e6+5; 4 int n,k,a[N],ans; 5 6 bool isprime(int x){ 7 int vi=sqrt(x); 8 for(int i=2;i<=vi;i++){ 9 if(x%i==0) ret…
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大小,圆点权值记为-1,那么\(x \rightarrow y\)的答案就是树上\(x\rightarrow y\)的路径权值和. 直接枚举\(O(n^2)\),点分治\(O(n\log n)\),考虑每个点被经过的次数乘上它的权值即可\(O(n)\). 注意图可能不连通. 代码 #include<b…
题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). 问题转化为对于所有\(a_i \leqslant y_i \leqslant b_i\)的商店,\((x - mid, x + mid)\)内是否所有类型的商店都出现过 若都出现过,减小\(mid\),否则增大\(mid\) 现在有两个问题: 如何维护当前可行的所有商店,以及我们需要的信息 如何判…