caioj 1152 快速求模 (快速幂)】的更多相关文章

(1)开long long,不然中间结果会溢出 (2)注意一开始的初始化,保险一点. #include<cstdio> #include<cctype> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; typedef…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 /* Name: NYOJ--102--次方求模 Copyright: ©20…
n=1  --> ans = 2 = 1*2 = 2^0(2^0+1) n=2  -->  ans = 6 = 2*3 = 2^1(2^1+1) n=3  -->  ans = 20 = 4*5 = 2^2(2^2+1) n=4  -->  ans = 72 = 8*9 = 2^3(2^3+1) n=k  -->  ??? = 2^k-1*(2^k-1+1) 于是题目转化为快速幂求模问题..... #include<bits/stdc++.h> using nam…
小明的求助 时间限制:2000 ms  |  内存限制:65535 KB 难度:2 描述 小明对数学很有兴趣,今天老师出了道作业题,让他求整数N的后M位,他瞬间感觉老师在作弄他,因为这是so easy! 当他看到第二道题目的时候,他就确定老师在捉弄他了,求出N^P的后M位,因为他不会了.你能帮他吗? 输入 第一行包含一个整数T(T <= 1000),代表测试数据组数. 接下来的T行每行含三个整数,N,P,M(1 <= N <= 10^10,1 <= P <= 10^15,1…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 求a的b次方对c取余的值   输入 第一行输入一个整数n表示测试数据的组数(n<100)每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 注意用long long 型 #include<stdio.h>…
次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 来源 [张云聪]原创 上传者 张云聪 我胡汉三又回来了 #include<st…
点击打开链接 次方求模 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测试只有一行,其中有三个正整数a,b,c(1=<a,b,c<=1000000000) 输出 输出a的b次方对c取余之后的结果 样例输入 3 2 3 5 3 100 10 11 12345 12345 样例输出 3 1 10481 把指数反复二分.最后再合并,很裸的快速幂,注意题目中没有0次方的情况,…
快速幂取模 即快速求出(a^b)mod c 的值.由于当a.b的值非常大时直接求a^b可能造成溢出,并且效率低. 思路 原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% c\),\(a^b \% c = (a \% c)^b \% c\)公式. 求解快速幂: 设指数b用二进制表示为\(b = (b_n b_{n-1}...b_2b_1b_0)_2\), \(b = b_0 + b_1*2^1 + b_2*2^2+...+b_{n-1}*2^{n-1} + b_n*…
快速求排列组合C(m,n)%mod 写在前面: 1. 为防止产生n和m的歧义,本博文一律默认n >= m 2. 本博文默认mod = 10^6+3 3. 本博文假设读者已知排列组合公式 C(m,n)=n!(n−m)!∗m! 4. 普通的小数据就不用多说了,直接用公式,当然别忘了取模 C(m,n)=C(m−1,n−1)+C(m,n−1) 现在我们讨论当n可达10^9数量级大小时的算法. 步骤一:我们先把分子阶乘写成以下形式 n!=X∗modY 步骤二:对分母元素乘机求逆元.此时我们假设得到了以下方…
/* 快速幂计算,传统计算方式如果幂次是100就要循环100遍求值 快速幂计算只需要循环7次即可 求x的y次方 x^y可以做如下分解 把y转换为2进制,设第n位的值为i,计算第n位的权为x^(2^(n-1)*i) 例如2^12 12的二进制是1100 12=2^3*1+2^2*1+2^1*0+2^0*0 因此2^12=2^(2^3+2^2) 分解得到2^12=2^(2^3)*2^(2^2) */ function myPow(dx, dy) { var r = 1; while (dy != 0…