在"文本比较算法Ⅰ--LD算法"中介绍了基于编辑距离的文本比较算法--LD算法. 本文介绍基于最长公共子串的文本比较算法--Needleman/Wunsch算法. 还是以实例说明:字符串A=kitten,字符串B=sitting 那他们的最长公共子串为ittn(注:最长公共子串不需要连续出现,但一定是出现的顺序一致),最长公共子串长度为4. 定义: LCS(A,B)表示字符串A和字符串B的最长公共子串的长度.很显然,LSC(A,B)=0表示两个字符串没有公共部分. Rev(A)表示反转…
算法见:http://www.cnblogs.com/grenet/archive/2010/06/03/1750454.html 求最长公共子串(不需要连续) #include <stdio.h> #include <string> #define N 100 int max(int a, int b, int c){ return (a>b?a:b)>c?(a>b?a:b):c; } int needleman(char s1[], char s2[]){ i…
本文介绍基于最长公共子序列的文本比较算法——Needleman/Wunsch算法.还是以实例说明:字符串A=kitten,字符串B=sitting那他们的最长公共子序列为ittn(注:最长公共子序列不需要连续出现,但一定是出现的顺序一致),最长公共子序列长度为4. 和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想,两者十分相似. 举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B). 第一步:初始化动态转移矩阵 Needleman/Wunsch…
生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm. 利用Needleman–Wunsch算法进行DNA序列全局比对 转载请保留出处! 贴上python代码: # -*- coding: utf-8 -*- """ Created on Sat Nov 25 18:20:01 2017 @autho…
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于生物序列的比较的最早期的几个实例之一.该算法是由 Saul B. Needlman和 Christian D. Wunsch 两位科学家于1970年发明的.本算法高效地解决了如何将一个庞大的数学问题分解为一系列小问题,并且从一系列小问题的解决方法重建大问题的解决方法的过程.该算法也被称为优化匹配算法…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
很早就知道有全局比对和局部比对这两种比对方法,都是用到的动态规划的思想,知道一些罚分矩阵的概念,但一直都没有机会搞透彻,一些算法的细节也不太清楚,也没有亲手编程实现. 现在由于项目需求,需要手动写一个简单的全局和局部比对的程序,同时得知团队里有个大牛早就用Perl实现了,看了一下他的代码也才100行,于是我打算从头开始全面的弄懂算法的每一个细节,然后再用python实现一遍.…