模板 lucas】的更多相关文章

2017-08-10 19:35:32 整理者:pprp 用于计算C(m,n) % p 代码如下: //lucas #include <iostream> using namespace std; typedef long long ll; //a^b%m 快速幂 int quick_power_mod(int a, int b, int m) { ; int base = a; ) { == )//如果b是奇数 { result = (result * base) % m; } base =…
void extend_gcd(ll a,ll &x,ll b,ll &y){ ){ x=,y=; return; } ll x1,y1; extend_gcd(b,x1,a%b,y1); x=y1; y=x1-(a/b)*y1; } ll inv(ll a,ll m){ ll t1,t2; extend_gcd(a,t1,m,t2); return ( t1%m + m ) % m; } ll qpow(ll x,ll y,ll m){ ; ll ans=qpow(x,y>>…
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int jc[100003]; int p; int ipow(int x, int b) { ll t = 1, w = x;…
Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式:    ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ( (1 + x)p)s· (1 + x) q Ξ(1 + xp) s· (1 + x) q(mod p)     (modp) 所以得(1 + x) sp+q    (mod p) 我们求右边的    的系数为: 求左边的    为: 通过观察你会发现当且仅当i = t , j = r ,能够得到    的…
模板—数学—Lucas Code: #include <cstdio> #include <algorithm> using namespace std; #define N 100010 int n,m,p,inv[N],powq[N]; int lucas(int n,int m) { if(n<m) return 0; if(n<=p&&m<=p) return 1ll*powq[n]*inv[m]%p*inv[n-m]%p; return…
(上不了p站我要死了,侵权度娘背锅) Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值.(1<=m<=n<=200,000,000) Input 第一行一个整数t,表示有t组数据.(t<=200) 接下来t行每行两个整数n, m,如题意. Output T行,每行一个数,为C(n, m) mod 10007的答…
typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数 输入:C(n,m)%p 调用lucas(n,m,p) 复杂度:min(m,p)*log(m) ***********************************/ //ax + by = gcd(a,b) //传入固定值a,b.放回 d=gcd(a,b), x , y…
acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, m <= 1000000000, 1 < p < 100000 [思路] 答案为C(n+m,m)%p 对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况.就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了.这里用到Luca…
思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ ; if(n<mod&&m<mod)return fac[n]*inv[n-m]%mod*inv[m]%mod; return C(n/mod,m/mod)*…
2982: combination Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 734  Solved: 437[Submit][Status][Discuss] Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ的一年有10007天,所以他想知道答案mod 10007的值.(1<=m<=n<=200,000,000) Inpu…