句子相似度_tf/idf】的更多相关文章

import mathfrom math import isnanimport pandas as pd#结巴分词,切开之后,有分隔符def jieba_function(sent): import jieba sent1 = jieba.cut(sent) s = [] for each in sent1: s.append(each) return ' '.join(str(i) for i in s)def count_cos_similarity(vec_1, vec_2): if le…
使用 TF-IDF 加权的空间向量模型实现句子相似度计算 字符匹配层次计算句子相似度 计算两个句子相似度的算法有很多种,但是对于从未了解过这方面算法的人来说,可能最容易想到的就是使用字符串匹配相关的算法,来检查两个句子所对应的字符串的字符相似程度.比如单纯的进行子串匹配,搜索 A 串中能与 B 串匹配的最大子串作为得分,亦或者用比较常见的最长公共子序列算法来衡量两个串的相似程度,使用编辑距离算法来衡量等. 上述基于字符匹配层次的算法一定程度上都可以计算出两个句子的相似度,不过他们只是单纯的从字符…
  本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代.   本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity).   首先,让我们来看一下,什么是词袋模型.我们以下面两个简单句子为例: sent1 = "I love sky, I love sea." sent2 = "I like running, I love reading."   通常,NL…
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, words1 = ["great", "acting", "skills"] and words2 = [&…
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, "great acting skills" and "fine drama talent" are similar, if th…
使用句子中出现单词的Vector加权平均进行文本相似度分析虽然简单,但也有比较明显的缺点:没有考虑词序且词向量区别不明确.如下面两个句子: "北京的首都是中国"与"中国的首都是北京"的相似度为1. "学习容易"和"学习困难"的相似度很容易也非常高. 为解决这类问题,需要用其他方法对句子进行表示,LSTM是常用的一种方式,本文简单使用单层LSTM对句子重新表示,并通过若干全连接层对句子相似度进行衡量. 数据准备 训练和测试数据包…
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, "great acting skills" and "fine drama talent" are similar, if th…
import jiebafrom jieba import analyseimport numpyimport gensimimport codecsimport pandas as pdimport jieba.posseg as pogfrom gensim.models import Word2Vecfrom gensim.models.word2vec import LineSentence#获取训练语料def data_handle(data): n = data.shape[0] d…
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, words1 = ["great", "acting", "skills"] and words2 = [&…
Given two sentences words1, words2 (each represented as an array of strings), and a list of similar word pairs pairs, determine if two sentences are similar. For example, words1 = ["great", "acting", "skills"] and words2 = [&…
1,概述 在NLP中孪生网络基本是用来计算句子间的语义相似度的.其结构如下 在计算句子语义相似度的时候,都是以句子对的形式输入到网络中,孪生网络就是定义两个网络结构分别来表征句子对中的句子,然后通过曼哈顿距离,欧式距离,余弦相似度等来度量两个句子之间的空间相似度. 孪生网络又可以分为孪生网络和伪孪生网络,这两者的定义: 孪生网络:两个网络结构相同且共享参数,当两个句子来自统一领域且在结构上有很大的相似度时选择该模型: 伪孪生网络:两个网络结构相同但不共享参数,或者两个网络结构不同,当两个句子结构…
本篇博文是数据挖掘部分的首篇,思路主要是先聊聊相似度的理论部分,下一篇是代码实战.       我们在比较事物时,往往会用到“不同”,“一样”,“相似”等词语,这些词语背后都涉及到一个动作——双方的比较.只有通过比较才能得出结论,究竟是相同还是不同.但是万物真的有这么极端的区分吗?在我看来不是的,生活中通过“相似度”这词来描述可能会更加准确.比如男人和女人,虽然生理器官和可能思想有些不同,但也有相同的地方,那就是都是人,就是说相似度不为0:比如石头与小草,它们对于虚拟类都是一种实体类,相似度也不…
1. 引言 上一篇介绍了如何用无监督方法来训练sentence embedding,本文将介绍如何利用监督学习训练句子编码器从而获取sentence embedding,包括利用释义数据库PPDB.自然语言推理数据SNLI.以及综合利用监督训练数据和无监督训练数据. 2. 基于释义数据库PPDB 2015发表的论文Towards universal paraphrastic sentence embeddings提出使用PPDB(the Paraphrase Database)来学习通用的sen…
  Hugging Face是什么?它作为一个GitHub史上增长最快的AI项目,创始人将它的成功归功于弥补了科学与生产之间的鸿沟.什么意思呢?因为现在很多AI研究者写了大量的论文和开源了大量的代码,但是AI工程师又不能直接很好的使用,而Hugging Face将这些AI模型进行了更好的封装,满足了AI工程师的生产实践需要,大大降低了AI模型使用的门槛.Hugging Face已经共享了超100,000个预训练模型,10,000个数据集,涵盖了 NLP.计算机视觉.语音.时间序列.生物学.强化学…
本文重点: 和一般形式的文本处理方式一样,并没有特别大的差异,文章的重点在于提出了一个相似度矩阵 计算过程介绍: query和document中的首先通过word embedding处理后获得对应的表示矩阵 利用CNN网络进行处理获得各自的feature map,接着pooling后获得query对应的向量表示Xq和document的向量Xd 不同于传统的Siamense网络在这一步利用欧式距离或余弦距离直接对Xq和Xd进行相似性计算后预测结果,网络采用一个相似矩阵来计算Xq和Xd的相似度,然后…
关键词句和文本集每篇文章相关度计算:假设语料库中有几万篇文章,每篇文章的长度不一,你任意输入关键词或句子,通过代码以tf-idf值为准检索出来相似度高的文章. 1.TF-IDF概述 TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级. TFIDF的主要思想是:如果某个词或短…
一.前言 随着互联网的发展,数据的海量增长使得文本信息的分析与处理需求日益突显,而文本处理工作中关键词提取是基础工作之一. TF-IDF与TextRank是经典的关键词提取算法,需要掌握. 二.TF-IDF 2.1.TF-IDF通用介绍 TF-IDF,全称是 Term Frequency - inverse document frequency,由两部分组成---词频(Term Frequency),逆文档频率(inverse document frequency). TF-IDF=词频(TF)…
根据Survey of Data-Selection Methods in Statistical Machine Translation的总结,MT中的数据选择分类图如下: 使用场景 数据使用的场景决定了选择什么样的数据,及该方法要解决什么问题. Improve Quality:Domain Improvement.Unhelpful Data Reduction.Noise Reduction Limited Resources:Training Resources.Deployment R…
前不久做了有关自动文摘的学习,采用方法是TextRank算法,整理和大家分享. 一. 关于自动文摘 利用计算机将大量的文本进行处理,产生简洁.精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主要内容,这不仅大大节省时间,更提高阅读效率.但人工摘要耗时又耗力,已不能满足日益增长的信息需求,因此借助计算机进行文本处理的自动文摘应运而生.近年来,自动文摘.信息检索.信息过滤.机器识别.等研究已成为了人们关注的热点. 自动文摘(Automatic Summarization)的方法主要有两种:E…
RT,学校课题需要233,没了 话说,窝直接做个链接的集合好了,方便以后查找 特征值提取之 -- TF-IDF值的简单介绍 汉语语义消歧之 -- 句子相似度 汉语语义消歧之 -- 词义消歧简介 c++读入之 -- 汉字读入遇到的问题 c++实现之 -- 汉语词语的简单处理 c++实现之 -- 文章TF-IDF值的计算…
这是训练中文vocab做的句子相似度的程序: /home/xbwang/torch/install/bin/luajit: /home/xbwang/newtextsimilarity/util/Vocab.lua:75: Token not in vocabulary and no UNK token defined: 好 在这一步时出现了报错,回去看vocab.lua的代码就能发现是因为在词库中没有相应词的向量 stack traceback: [C]: in function 'error…
https://www.biaodianfu.com/automatic-text-summarizer.html 利用计算机将大量的文本进行处理,产生简洁.精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主要内容,这不仅大大节省时间,更提高阅读效率.但人工摘要耗时又耗力,已不能满足日益增长的信息需求,因此借助计算机进行文本处理的自动文摘应运而生.近年来,自动摘要.信息检索.信息过滤.机器识别.等研究已成为了人们关注的热点. 自动摘要(Automatic Summarization)的方…
1.常见文本相似度计算方法 常见的短文本相似度计算方法目前有很多中,但这些短文本相似度计算方法都只是提取了短文本中的浅层特征,而无法提取短文本中的深层特征.目前常见的文本相似度计算方法有: 1)简单共有词.对文本分词之后,计算两本文本中相同词的数量,然后除以更长的文本中词的数量. 2)编辑距离.简单理解就是指两个字符串之间,由一个字符串转成另一个字符串所需的最少编辑操作次数. 3)TF-ITF +余弦相似度/距离计算方法.利用TF-ITF提取关键词,将文本转换成向量空间模型,然后计算两个文本在向…
前不久做了有关自动文摘的学习,采用方法是TextRank算法,整理和大家分享. 一. 关于自动文摘 利用计算机将大量的文本进行处理,产生简洁.精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主要内容,这不仅大大节省时间,更提高阅读效率.但人工摘要耗时又耗力,已不能满足日益增长的信息需求,因此借助计算机进行文本处理的自动文摘应运而生.近年来,自动文摘.信息检索.信息过滤.机器识别.等研究已成为了人们关注的热点. 自动文摘(Automatic Summarization)的方法主要有两种:E…
目录: 1. 联合概率 2. 条件概率 3. N-gram的计算方式 4. 评估N-gram的模型. 前言: N-gram是机器学习中NLP处理中的一个较为重要的语言模型,常用来做句子相似度比较,模糊查询,以及句子合理性,句子矫正等. 再系统的介绍N-gram前,我们先了解一下这几种概率. 正文: 1.联合概率介绍: 形如:p(W1,....,Wn); 表示的意思是: w1,...Wn同时发生的概率.列举一个具体的例子说明: P(A,B) ,表示的是A,B同时发生的概率. 1.1 当A,B相互独…
参加了今年的ai challenger 的image caption比赛,最终很幸运的获得了第二名.这里小结一下. Pytorch 越来越火了.. 前五名有三个pytorch, 两个tensorflow 关于哪个learning frame work 更适合图像nlp相关的应用 我觉得用户用脚投票使用程度说明一切.tensorflow有强大的slim图像库支持,比如nasnet是slim最先支持的毕竟google原版...,但是在很多比赛灵活性上对比pytorch还有欠缺 比如强化学习feed …
1.word2vec参数详解 · sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建.· sg: 用于设置训练算法,默认为0,对应CBOW算法:sg=1则采用skip-gram算法.· size:是指特征向量的维度,默认为100.大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百.· window:表示当前词与预测词在一个句子中的最大距离是多少· alpha: 是学习速率· seed:用于随…
https://aclanthology.info/pdf/W/W11/W11-2308.pdf 2 background2000年以前 ----传统可读性准则局限于表面的文本特征,例如the Flesch-Kincaid measure(现在还在用的最普遍的)是每个单词的平均音节数和每个句子的平均单词数的线性函数,前者和后者都作为词汇和语法复杂度的代表.对于意大利而言,有两个可读性公式:the Flesh-Kincaid的从英语道意大利语的转变,即the Flesch-Vacca formul…
abstract句子结构是文本语言质量的关键,我们记录了以下实验结果:句法短语统计和其他结构特征对文本方面的预测能力.手工评估的句子fluency流利度用于机器翻译评估和文本摘要质量的评估是黄金准则.我们发现和短语长度相关的结构特征是弱特征,但是与fluency强相关,基于整个结构特征的分类器可以在句子fluency成对比较和区分机器翻译和人类翻译上取得高准确率.我们也测试了这个假设即,学到的模型可以捕捉人类创作文本的普遍的fluency性质.实验结果不支持这种假设.同时结构特征和基于结构特征的…
术语: 数据lemma:词根,词元(词的基本形式,如名词单数或动词的不定式形式) content words:实词part-of-speech:词性object-relative clauses and prepositional-phrase attachments :宾语关系从句和介词短语从句 i.e. :即verb ellipsis:动词省略predicate :谓语subordination :<语>主从关系dependency links:从属关系clause:从句.分句metric…