首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
深度学习(四) softmax函数
】的更多相关文章
从极大似然估计的角度理解深度学习中loss函数
从极大似然估计的角度理解深度学习中loss函数 为了理解这一概念,首先回顾下最大似然估计的概念: 最大似然估计常用于利用已知的样本结果,反推最有可能导致这一结果产生的参数值,往往模型结果已经确定,用于反推模型中的参数.即在参数空间中选择最有可能导致样本结果发生的参数.因为结果已知,则某一参数使得结果产生的概率最大,则该参数为最优参数. 似然函数:\[ l(\theta) = p(x_1,x_2,...,x_N|\theta) = \prod_{i=1}^{N}{p(x_i|\theta)}\]…
【转载】深度学习中softmax交叉熵损失函数的理解
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/lilong117194/article/details/81542667 1. softmax层的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层…
【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失
1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问"多少",而是问"哪一个",用于预测某个事物属于哪个类别,如该电子邮件是否是垃圾邮件.该图像是猫还是狗.该用户接下来最有可能看哪部电影等. 分类问题也有些许差别:(1)我们只对样本的硬性类别感兴趣,即属于哪个类别:(2)我们希望得到软性类别,即每个类别的概率是多少.这两者的界…
深度学习之softmax回归
前言 以下内容是个人学习之后的感悟,转载请注明出处~ softmax回归 首先,我们看一下sigmod激活函数,如下图,它经常用于逻辑回归,将一个real value映射到(0,1)的区间(当然也可以是 (-1,1)),这样可以用来做二分类. 接下来,我们再看一下softmax函数,其函数类型如下: 那么,softmax又是怎么实现的呢?softmax把一个k维的real value向量(a1,a2,a3,a4….)映射成一个(b1,b2,b3,b4….) 其中bi是一个0…
go微服务框架go-micro深度学习(四) rpc方法调用过程详解
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了.这篇帖子详细说一下,go-micro的通信协议.编码,和具体服务方法的调用过程是如何实现的,文中的代码还是我github上的例子: gomicrorpc go-micro 支持很多通信协议:http.tcp.grpc等,支持的编码方式也很多有jso…
深度学习TensorFlow常用函数
tensorflow常用函数 TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU.一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测.如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作. 并行计算能让代价大的算法计算加速执行,TensorFlow也在实现上对复杂操作进行了有效的改进.大部分核相关的操作都是设备相关的实现,比如GPU.下面是一些重要的操作/核: 操作组 操…
深度学习四从循环神经网络入手学习LSTM及GRU
循环神经网络 简介 循环神经网络(Recurrent Neural Networks, RNN) 是一类用于处理序列数据的神经网络.之前的说的卷积神经网络是专门用于处理网格化数据(例如一个图像)的神经网络,而循环神经网络专门用于处理序列数据(例如\(x^{(1)},x^{(2)},···,x^{(T)},\))的神经网络. 应用场景 一些要求处理序列输入的任务,例如: 语音识别(speech recognition) 时间序列预测(time series prediction) 机器翻译(mac…
深度学习:Sigmoid函数与损失函数求导
1.sigmoid函数 sigmoid函数,也就是s型曲线函数,如下: 函数: 导数: 上面是我们常见的形式,虽然知道这样的形式,也知道计算流程,不够感觉并不太直观,下面来分析一下. 1.1 从指数函数到sigmoid 首先我们来画出指数函数的基本图形: 从上图,我们得到了这样的几个信息,指数函数过(0,1)点,单调递增/递减,定义域为(−∞,+∞),值域为(0,+∞),再来我们看一下sigmoid函数的图像: 如果直接把e−x放到分母上,就与ex图像一样了,所以分母加上…
深度学习中的batch_size,iterations,epochs等概念的理解
在自己完成的几个有关深度学习的Demo中,几乎都出现了batch_size,iterations,epochs这些字眼,刚开始我也没在意,觉得Demo能运行就OK了,但随着学习的深入,我就觉得不弄懂这几个基本的概念,对整个深度学习框架理解的自然就不够透彻,所以今天让我们一起了解一下这三个概念. 1.batch_size 深度学习的优化算法,用大白话来说其实主要就是梯度下降算法,而每次的参数权重更新主要有两种方法. (1)遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度 这种方法…
go微服务框架go-micro深度学习-目录
go微服务框架go-micro深度学习(一) 整体架构介绍 go微服务框架go-micro深度学习(二) 入门例子 go微服务框架go-micro深度学习(三) Registry服务的注册和发现 go微服务框架go-micro深度学习(四) rpc方法调用过程详解 go微服务框架go-micro深度学习(五) stream 调用过程详解 代码在github上…