【BZOJ3811】玛里苟斯(线性基)】的更多相关文章

原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ 位为 $1$ ,则对答案的贡献为 $2^i/2$ . k=2 : 发现每个异或和的平方为 $\sum_i\sum_j2^{i+j}bit_ibit_j$.那么考虑第 $i$ 位和第 $j$ 位的积的期望值.如果所有的数中,第 $i$ 位和第 $j$ 位均相等且非全零,那么参考 k=1 的情况,期望为…
BZOJ UOJ 感觉网上大部分题解对我这种数学基础差的人来说十分不友好...(虽然理解后也觉得没有那么难) 结合两篇写的比较好的详细写一写.如果有错要指出啊QAQ https://blog.csdn.net/smallsxj/article/details/73205569 https://www.cnblogs.com/wujiechao/p/7781140.html 首先题目要求输出精确的小数,由下面的推导可知答案要么是整数,要么是一位小数\(.5\),不会是\(.25,\ .125\)什…
Description Solution 考虑k=1的情况.假设所有数中,第i位为1的数的个数为x,则最后所有的子集异或结果中,第i位为1的个数为$(C_{k}^{1}+C_{k}^{3}+...)$*2原本的数中第i位为0的数的个数.同理,所有子集异或结果中第i位为0的个数为$(C_{k}^{0}+C_{k}^{2}+...)$*2原本的数中第i位为0的数的个数. 由于二项式定理,可得前后两个式子大小相等.即对于每一位i,如果该位有某个(些)数为1,ans+=10i-1/2. k=2同理. 对…
[BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况,我们直接拆开平方式,平方项的贡献直接算,出现的概率还是\(0.5\),然后\(2ab\)这样子的东西出现的概率是\(0.5*0.5=0.25\),然而注意到有一些位直接两两之间存在联系,即选择了第\(i\)位的时候必定会同时选择第\(j\)位,那么此时两位之间的概率就是\(0.5\),这一部分要特…
k=1的话非常好做,每个有1的位都有一半可能性提供贡献.由组合数的一些性质非常容易证明. k=2的话,平方的式子展开可以发现要计算的是每一对位提供的贡献,于是需要计算每一对位被同时选中的概率.找出所有存在的相互绑定的位,这些位被同时选择的概率为0.5,而不被绑定的则为0.25. 对于k>=3,其实用与k=1,2相同的方法大力讨论也可以做.考虑更优美的做法.有一个性质:集合内数相互异或不影响答案.证明比(bing)较(bu)显(hui)然(xie).于是构造出线性基.可以发现线性基里的元素很少,暴…
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率dp:对于k=1的时候,把所有存在的位乘0.5就行了,对于k=2的时候就可以用类似推反演的方法(转换枚举顺序之类的)退出来一个式子,然后你只需要求个概率(很好推,也很好求)就可以啦 线性基:搜索之前还有dp之前预处理用的(只是构造一下) 然而我的做法却是,先求出线性基,再用期望概率dp(类似OSU!…
传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概率就是\(\frac{1}{2}\) 证:把\(a_j\)拿出来,那么剩下的里面选出的子集不管是什么情况,\(a_j\)放进去或不放肯定有一种能使\(x\)的第\(i\)位为\(1\),且另一种使\(x\)的第\(i\)位为\(0\),那么概率就是\(\frac{1}{2}\) 然后是\(k=2\)…
这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5的概率贡献1<<i,否则没有贡献,因为这一位选了奇数偶数个1的概率是一样的 对于k==2,考虑乘法的意义,也就是i位和j位同时为1的概率p,贡献(1<<(i+j))*p,这个p,如果全部的a[k]都是在i位和j为相同则是p=0.5(因为这样一来ij的值就关联了),否则p=0.25 对于…
UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long long,因此考虑另辟蹊径.注意到答案 \(\le 2^{63}-1\),也就是说当 \(k\) 比较大时值域也不会太大.因此考虑对 \(k\) 分类讨论. \(k=1\) 时考虑计算每一位的贡献,注意到对于一位 \(i\),如果存在某个 \(a_j\) 满足 \(a_j\) 的 \(2^i\) 位为 \…
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还是详细港下趴,,, 就每次选定一个未知数,通过加减消元使得所有方程中只有一个方程中它的系数不为0 然后这么一直做下去最后就会得到一个,这样的东西 a是系数b是方程右边的那个玩意儿 然后就输出b/a就成了,,还挺简单的是不是x就模拟了一个加减消元 然后就放代码趴 #include<bits/stdc+…