网络传播模型Python代码实现】的更多相关文章

SI模型 import numpy as np import matplotlib.pyplot as plt import smallworld as sw #邻接矩阵 a = sw.a # 感染率 beta = sw.beta #初始患者 origin = sw.origin def si_(a, beta, origin): #总人数 n = a.shape[0] #控制符 judge = 1 #未感染人群 s = np.arange(n) s = np.delete(s, origin)…
1 网络IO模型介绍 服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种:    (1)同步阻塞IO(Blocking IO):即传统的IO模型.    (2)同步非阻塞IO(Non-blocking IO):默认创建的socket都是阻塞的,非阻塞IO要求socket被设置为NONBLOCK.注意这里所说的NIO并非Java的NIO(New IO)库.    (3)IO多路复用(IO Multiplexing):即经典的Reactor设计模式,有时也称为异步阻塞IO,Java中的S…
例12:一只游船上有800(1000)人,一名游客不慎患传染病,12(10)小时后有3人发病,由于船上不能及时隔离,问经过60(30)小时,72小时,患此病的人数.(与人口模型和Logistic模型类似) 先用python和matlab模拟 我的python代码 # -*- coding: utf-8 -*- import numpy as np import random import matplotlib matplotlib.rcParams['font.sans-serif']=[u's…
上篇介绍了隐马尔科夫模型 本文给出关于问题3解决方法,并给出一个例子的python代码 回顾上文,问题3是什么, 下面给出,维比特算法(biterbi) algorithm 下面通过一个具体例子,来说明维比特算法(biterbi) 下面附上该解决该例题的python代码 import numpy as np #you must install the numpy A=np.array([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]) B=np.array(…
链接:https://blog.csdn.net/thriving_fcl/article/details/75213361 saved_model模块主要用于TensorFlow Serving.TF Serving是一个将训练好的模型部署至生产环境的系统,主要的优点在于可以保持Server端与API不变的情况下,部署新的算法或进行试验,同时还有很高的性能. 保持Server端与API不变有什么好处呢?有很多好处,我只从我体会的一个方面举例子说明一下,比如我们需要部署一个文本分类模型,那么输入…
一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转载!英文出处:iamtrask.欢迎加入翻译组. 概要:直接上代码是最有效的学习方式.这篇教程通过由一段简短的 python 代码实现的非常简单的实例来讲解 BP 反向传播算法. 代码如下:   X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) y…
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检测识别,也可通过电脑连接的摄像头设备进行实时识别人脸性别:可对图像中存在的多张人脸进行性别识别,可选择任意一张人脸框选显示结果,检测速度快.识别精度高.博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接.本博文目录如下: 目录 前言 1. 效果演示…
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用python的接口进行学习.本博文主要以/tensorflow/tensorflow/models/image/mnist(github上下载)作为例程,讲解python代码的实现. 读代码的时候,建议大家理清主线,从主函数开始,调用到那个子函数时,再去阅读子函数的功能.我在minist的python代码中…
这篇文章主要介绍了利用Python中的mock库对Python代码进行模拟测试,mock库自从Python3.3依赖成为了Python的内置库,本文也等于介绍了该库的用法,需要的朋友可以参考下    如何不靠耐心测试 通常,我们编写的软件会直接与那些我们称之为“肮脏的”服务交互.通俗地说,服务对我们的应用来说是至关重要的,它们之间的交互是我们设计好的,但这会带来我们不希望的副作用——就是那些在我们自己测试的时候不希望的功能. 比如,可能我们正在写一个社交软件并且想测试一下“发布到Facebook…
教你用一行Python代码实现并行 本文教你通过一行Python实现并行化. Python在程序并行化方面多少有些声名狼藉.撇开技术上的问题,例如线程的实现和GIL,我觉得错误的教学指导才是主要问题.常见的经典Python多线程.多进程教程多显得偏"重".而且往往隔靴搔痒,没有深入探讨日常工作中最有用的内容. 传统的例子 简单搜索下"Python多线程教程",不难发现几乎所有的教程都给出涉及类和队列的例子: #Example.py ''' Standard Prod…
一.网络相关概念 IP地址: 主机 用于 路由寻址  用的数字标识 域名: 便于IP地址记忆 DNS: 通过注册的 域名 指向 ip 的服务 DDNS: 将用户的动态IP地址映射到一个固定的域名解析服务上用户每次连接网络的时候客户端程序就会通过 信息 传递把该主机的 动态IP地址 传送给位于服务商主机上的 服务器程序,服务器程序负责提供 DNS服务 并实现动态域名解析实现一个 用户访问域名---客户端传递ip---服务器DNS动态解析--域名解析给用户访问对应的地址 MAC地址: 物理地址/硬件…
目录 文章目录 目录 前言 传统网络到虚拟化网络的演进 单一平面网络到混合平面网络的演进 Neutron 简述 Neutron 的网络实现模型 计算节点网络实现模型 内外 VID 转换 网络节点网络实现模型 控制节点的网络实现模型 参考文献 前言 有人说 Neutron 难学,不信邪的我非要捅穿这 Neutron(热血). 本文从整体上介绍 Neutron 的部署架构.网络实现模型.上层资源模型.底层技术支撑.设计意图以及实践案例.目的是从鸟瞰的视角掌握 Neutron 的全局.本文参考和引用了…
原理解析 KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1.在训练数据集中,找到和需要预测样本最近邻的K个实例: 2.分别统计这K个实例所属的类别,最多的那个类别就是样本预测的类别(多数表决法): 对于回归任务而言,则是求这K个实例输出值的平均值(选择平均法): 因此,该算法的几个重点在于: 1.K值的选取,K值的不同直接会导致最终结果的不同: 选择较小的k值,就相当…
Python猫注:Python 语言诞生 30 年了,如今的发展势头可谓如火如荼,这很大程度上得益于其易学易用的优秀设计,而不可否认的是,Python 从其它语言中偷师了不少.本文作者是一名资深的核心开发者,他广博的视野和精准的认识,让我对 Python 的设计了解得更为全面,同时,他"利用自豪感而非恐惧感"的说法,传达出来的是"专注于自我的进步,不嫉妒他人的成功"的原则,对我也很有帮助.原文写于 2015 年,躺在我的收藏夹里很久很久了,如今顺利翻译掉,这是一件能…
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是…
Josh Triplett以一个“笑点”开始了他在PyCon 2015上的演讲:移植Python使其无需操作系统运行:他和他的英特尔同事让解释器能够在GRUB引导程序.BIOS或EFI系统上运行.连演讲的休息时间也没放过,他有很多有趣的要说的事情,还有许多让人大开眼界的演示. Python在Boot Loader上运行的最初想法是能够测试硬件,像BIOS,可扩展固件接口(EFI)以及高级配置和电源接口(ACPI),而无需去写一些“一次性测试项目“程序集.传统来说,英特尔已经写了很多针对DOS(B…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
原文:Python网络01 原始Python服务器 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 之前我的Python教程中有人留言,表示只学Python没有用,必须学会一个框架(比如Django和web.py)才能找到工作.而我的想法是,掌握一个类似于框架的高级工具是有用的,但是基础的东西可以让你永远不被淘汰.不要被工具限制了自己的发展.今天,我在这里想要展示的,就是不使用框架,甚至不使用Python标准库中的高级包,只使…
winsock编程IOCP模型实现代码 话不多说,上代码.借鉴<windows核心编程>部分源码和CSDN小猪部分代码. stdafx.h依赖头文件: #include <iostream> #include <WinSock2.h> #include <MSWSock.h> #include <vector> #include "Singleton.h" #include "IOCPWrapper.h"…
前些日子在做绩效体系的时候,遇到了一件囧事,居然忘记怎样在Excel上拟合正态分布了,尽管在第二天重新拾起了Excel中那几个常见的函数和图像的做法,还是十分的惭愧.实际上,当时有效偏颇了,忽略了问题的本质,解决数据分析和可视化问题,其实也是Python的拿手好戏. 例如,画出指定区间的一个多项式函数: Python 代码如下: import numpy as np import matplotlib.pyplot as plt X = np.linspace(-4, 4, 1024) Y =…
深入理解 GIL:如何写出高性能及线程安全的 Python 代码 本文由 伯乐在线 - 郑芸 翻译.未经许可,禁止转载!英文出处:A. Jesse.欢迎加入翻译组. GIL对多线程的影响:http://www.dabeaz.com/python/UnderstandingGIL.pdf 前引 6岁时,我有一个音乐盒.我上紧发条,音乐盒顶上的芭蕾舞女演员就会旋转起来,同时,内部装置发出“一闪一闪亮晶晶,满天都是小星星”的叮铃声.那玩意儿肯定俗气透了,但我喜欢那个音乐盒,我想知道它的工作原理是什么.…
本文转载自: http://www.tuicool.com/articles/aEBNRnU   在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做.…
Josh Triplett以一个“笑点”开始了他在PyCon 2015上的演讲:移植Python使其无需操作系统运行:他和他的英特尔同事让解释器能够在GRUB引导程序.BIOS或EFI系统上运行.连演讲的休息时间也没放过,他有很多有趣的要说的事情,还有许多让人大开眼界的演示. Python在Boot Loader上运行的最初想法是能够测试硬件,像BIOS,可扩展固件接口(EFI)以及高级配置和电源接口(ACPI),而无需去写一些“一次性测试项目“程序集.传统来说,英特尔已经写了很多针对DOS(B…
PEP 8 - Python代码样式指南 PEP: 8 标题: Python代码风格指南 作者: Guido van Rossum <python.org上的guido>,Barry Warsaw <python.org上的barry>,Nick Coghlan <ncoghlan at gmail.com> 状态: 活性 类型: 处理 创建: 05 - 07月2001 后的历史: 05-Jul-2001,01-Aug-2013 内容 介绍 愚蠢的一致性是小心灵的大地精…
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种.看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多. 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配的问题. 使用数据类型:数值型和标称型. 简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”. 一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别. 为了解决这个问题,同…
Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggle 网站流量时序预测竞赛第一名的详细解决方案.他们不仅公开了所有的实现代码,同时还详细解释了实现的模型与经验.机器之心简要介绍了他们所实现的模型与经验,更详细的代码请查看 GitHub 项目. GitHub 项目地址:https://github.com/Arturus/kaggle-web-tra…
Socket-IO 系列(一)Linux 网络 IO 模型 一.基本概念 在正式开始讲 Linux IO 模型前,先介绍 5 个基本概念. 1.1 用户空间与内核空间 现在操作系统都是采用虚拟存储器,那么对 32 位操作系统而言,它的寻址空间 (虚拟存储空间)为 4G (2的32次方).操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限.为了保证用户进程不能直接操作内核 (kernel),保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内…
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果.在各种各样的问题中,随机森林一次又一次地展示出令人难以置信的强大,而与此同时它又是如此的方便实用. 需要大家注意的是,在上文中特别提到的是第一组测试结果,而非所有的结果,这是因为随机森林方法固然也有自己的局限性.在这篇文章中,我们将向你介绍运用随机森林构建预测模型时最令人感兴趣…
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码. 数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方. 这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用.二是非常简单,加上注释最长的也不过11行. 在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释. 大家可以把这篇文章收藏起来,当做工具箱使用. 涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖…
扫描左上角二维码,关注公众账号 数字货币量化投资,回复“1279”,获取以下600个Python经典例子源码 ├─algorithm│       Python用户推荐系统曼哈顿算法实现.py│      NFA引擎,Python正则测试工具应用示例.py│      Python datetime计时程序的实现方法.py│      python du熊学斐波那契实现.py│      python lambda实现求素数的简短代码.py│      Python localtime()方法计…