主要内容: 创建数据表 查看数据表 数据表索引.选取部分数据 通过标签选取.loc 多重索引选取 位置选取.iloc 布尔索引 Object Creation 新建数据 用list建series序列 In [73]: s = pd.Series([1,3,5,np.nan,6,8]) In [74]: s Out[74]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64 用numpy array建dataframe In [75]: date…
[ python数据分析笔记——数据加载与整理] https://mp.weixin.qq.com/s?__biz=MjM5MDM3Nzg0NA==&mid=2651588899&idx=4&sn=bf74cbf3cd26f434b73a581b6b96d9ac&chksm=bdbd1b388aca922ee87842d4444e8b6364de4f5e173cb805195a54f9ee073c6f5cb17724c363&mpshare=1&scene=…
利用pandas自带的函数notnull可以很容易判断某一列是否为null类型,但是如果这一列中某一格为空字符串"",此时notnull函数会返回True,而一般我们选择非空行并不包括这一点,所以需要把这一类也去掉. # df为需要筛选的数据框,col为选择非空依赖的列 df = df[(df[col].notnull) & (df[col] != "")] 如果数据来源是MySQL数据库,用sql函数调用的时候也要注意相同的问题. SELECT col F…
一.shuffle函数: import numpy.random def shuffleData(data): np.random.shufflr(data) cols=data.shape[1] X=data[:,0:cols-1] Y=data[:,cols-1:] return X,Y 二.np.random.permutation()函数 这个函数的使用来随机排列一个数组的, 一维数组: 对多维数组来说,是多维随机打乱而不是1维,例如: 如果要利用次函数对输入数据X.Y进行随机排序,且要…
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明: 1.数据框的创建 import pandas as pd from numpy import random a = [i for i i…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
一.初识DataFrame dataFrame 是一个带有索引的二维数据结构,每列可以有自己的名字,并且可以有不同的数据类型.你可以把它想象成一个 excel 表格或者数据库中的一张表DataFrame是最常用的 Pandas 对象. 二.数据框的创建 1.字典套列表方式创建 index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name"…
接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维…
Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利用pandas的DataFrames进行统计分析5.利用pandas实现SQL操作6.利用pandas进行缺失值的处理7.利用pandas实现Excel的数据透视表功能8.多层索引的使用 一.数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Ser…
第三周的课程pandas 分析数据 http://pandas.pydata.org import pandas as pd 常与numpy matplotlib 一块定义 d=pd.Series(range(20)) d.cumsum() 主要提供两个数据类型 Series DataFrame 基于上述数据类型的各类操作 很好的表示和封装 numpy         更关注数据的结构表达 数据之间构成的维度 pandas        基于numpy 实现的扩展库 建立其应用与索引之间的关系…