L1-001 Hello World】的更多相关文章

第十五节L1和L2正则几何解释和Ridge,Lasso,Elastic Net回归 上一节中我们讲解了L1和L2正则的概念,知道了L1和L2都会使不重要的维度权重下降得多,重要的维度权重下降得少,引入L1正则会使不重要的w趋于0(达到稀疏编码的目的),引入L2正则会使w的绝对值普遍变小(达到权值衰减的目的).本节的话我们从几何角度再讲解下L1和L2正则的区别. L1正则是什么?|W1|+|W2|,假如|W1|+|W2|=1,也就是w1和w2的绝对值之和为1 .让你画|W1|+|W2|=1的图形,…
前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对值损失函数和平方损失函数 区别: 分析: robust: 与L2相比,L1受异常点影响比较小,因此稳健 stable: 如果仅一个点,L1就是一个直线,L2是二次,对于直线来说是多解,因此不稳定,而二次函数只有一个极小值点 L1.L2正则化 为什么出现正则化? 正则化的根本原因是 输入样本的丰度不够…
1.L2正则化(岭回归) 1.1问题 想要理解什么是正则化,首先我们先来了解上图的方程式.当训练的特征和数据很少时,往往会造成欠拟合的情况,对应的是左边的坐标:而我们想要达到的目的往往是中间的坐标,适当的特征和数据用来训练:但往往现实生活中影响结果的因素是很多的,也就是说会有很多个特征值,所以训练模型的时候往往会造成过拟合的情况,如右边的坐标所示. 1.2公式 以图中的公式为例,往往我们得到的模型是: 为了能够得到中间坐标的图形,肯定是希望θ3和θ4越小越好,因为这两项越小就越接近于0,就可以得…
1.了解知道Dropout原理 深度学习网路中,参数多,可能出现过拟合及费时问题.为了解决这一问题,通过实验,在2012年,Hinton在其论文<Improving neural networks by preventing co-adaptation of feature detectors>中提出Dropout.证明了其能有效解决过拟合的能力. dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络示意图如…
swift 001  = 赋值是没有返回值的 所以 int a=10; int b=20; if(a=b){ printf("这个是错误的"); } swift  中的模运算 是支持  浮点数的 模运算 例如 8%2.5   ==>  0.5     原理   8=(2.5*3)+0.5 swift  中 Bool 中的 数值有  true   或者  false 在c语言中  0  假  非0就是真 但是 在 swift 中  不存在   这个说法 swift  中   if(…
机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
L1正则会产生稀疏解,让很多无用的特征的系数变为0,只留下一些有用的特征 L2正则不让某些特征的系数变为0,即不产生稀疏解,只让他们接近于0.即L2正则倾向于让权重w变小.见第二篇的推导. 所以,样本量比较少,但是特征特别多的时候,可以用L1正则,把一部分不显著的特征系数变成0: 而样本量多,特征偏少的时候,可以使用L2正则,保留住所有的特征,只是让系数变小,接近于0. 机器学习中的范数规则化之(一)L0.L1与L2范数 :http://blog.csdn.net/zouxy09/article…
[本文链接:http://www.cnblogs.com/breezedeus/p/3426757.html,转载请注明出处] 假设我们要求解以下的最小化问题:                                                                                \(  \min\limits_x f(x)  \) .如果\( f(x) \)可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行…
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题.本文为阅读作者 Yoshimasa Tsuruoka, Jun’chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descent Train…