AT cf17 final J Tree MST】的更多相关文章

目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定 N 个点,第 i 点有一个点权 Xi,再给定一棵边带权的树,第 i 条 (Ai, Bi) 边权为 Ci. 构建一个完全图,完全图中边 (i, j) 的边权为 dist(i, j) + Xi + Xj,其中 dist(i, j) 是点 i 与点 j 在树上的距离. 求该完全图的最小生成树. Constraints 2≤N≤200000; 1≤Xi≤10^9;…
Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连一条长度为 \(w[x] + w[y]+ dis(x, y)\) 的边.求这张图的最小生成树. \(n\leq 2\times 10^5\) Solution 在操场上晒太阳时想到的做法,求 \(\mathrm{MST}\) 可以使用另一种贪心算法:每次找到每个点连出去的最短的边,并将其合并,一次是…
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+dis(x,y)\),其中\(dis\)表示树上两点的距离. 求完全图的\(MST\). 题解 首先连边的这个式子可以直接转换成树上的两点间的路径,所以接下来只考虑\(dis(x,y)\). 考虑\(Boruvka\)算法的执行过程,每次都会选择到达一个点集最近的一个点,然后将他们连边. 现在考虑模拟这…
做一次MST, 枚举不在最小生成树上的每一条边(u,v), 然后加上这条边, 删掉(u,v)上的最大边(或严格次大边), 更新答案. 树链剖分然后ST维护最大值和严格次大值..倍增也是可以的... ------------------------------------------------------------------------------ #include<bits/stdc++.h>   using namespace std;   #define b(i) (1 <&l…
本文链接:http://www.cnblogs.com/Ash-ly/p/5409904.html 普瑞姆(Prim)算法: 假设N = (V, {E})是连通网,TE是N上最小生成树边的集合,U是是顶点集V的一个非空子集,算法从U = {uo}(u0 属于 V),TE = {}开始,重复执行下述动作: 在所有u属于U,v属于V - U的边(u, v),且(u, v)属于E中找一条代价最小的边(u0, v0)并并入集合TE中,同时v0并入U,直至U = V为止.此时TE中必有n - 1条边,则T…
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html 引导问题: 假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路.这时,自然会考虑这样一个问题,如何在最省经费的前提下建立这个通信网. 基于问题所建立的定义: 可以用联通网来表示N个城市以及N个城市之间可能设置的连通线路,其中网的顶点表示城市,边表示两城市之间的线路,赋予边的权值表示相应的代价.对于N个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网.现在,…
有一种限制下界强制选的,但是也可以不用 把每个格点拆成两个,一个连s一个连t,对于不是必选的连中间连流量1费用0边表示不选,然后黑白染色,黑点连横着白点连竖着,边权就是这条水管的权值,然后跑最大费用最大流 然后判断不可能就是不满流 并且这样可以满足每个被选的格子都在一个环上,因为他一定唯一对应另一个唯一的点,也就是出入度都是1 #include<iostream> #include<cstdio> #include<queue> #include<cstring&…
表示“必须选”的模型 题目大意 题目分析 一个格子有四种方式看上去很难处理.将横竖两个方向分开考虑,会发现:因为收益只与相邻格子是否连通有关,所以可以将一个格子拆成表示横竖两个方向的,互相独立的点. 上图的格子里四个方向红边表示的就是一个格子的可能方向:拆点后所连蓝边的容量为1,费用即为连通两个格子的收益. 但是这样建图不能够表示某些格子必须要选. 考虑一个格子如果被选择了会发生什么:因为每个格子都处在环上,那么被选择的网格一定可以通过其他节点走到汇点.这意味着一个格子拆成的两个节点之间的边就可…
题目 这个题的输入首先就是一棵树,我们考虑一下点分 我们对于每一个分治重心考虑一下跨过这个分治重心的连边情况 就是把当前分治区域内所有的点向距离分治重心最近的点连边 考虑一下这个算法的正确性,如果我们已经对一个联通块内部形成了一个\(mst\),我们需要把这个联通块和另外一个联通块合并 如果这个新的联通块出现会使得原来联通块的\(mst\)改变,那么新出现的边也只会是原来联通块的点和新联通块到这个点距离最近的点之间的边,而这些最近的点又都是一个,所以我们就可以大大简化连边数量了 所以这个点分的过…
和一般的管道不同 不能类似“无限之环”或者“弯弯国”的建图,因为这两个题都是某些位置必须有,或者必须没有 但是本题可以有的位置随意,不能限制某个位置要么流2,要么流0,(实际上可能流了1过去) 所以建图方式不能一样了. 唯一的好处是:只有四种管道. 横的.竖的,所以考虑拆点 法一: 黑白染色 每个点拆成两个点,横.竖 黑色:横->竖,竖->上下的白点的竖,左右白点的横->横 白色:竖->横,横->到左右黑点的横,上下的黑点->竖 必须的就上下界[1,1]否则[0,1]…