Caffe初试】的更多相关文章

之前已经配置过一次caffe环境了: Caffe初试(一)win7_64bit+VS2013+Opencv2.4.10+CUDA6.5配置Caffe环境 但其中也提到,编译时,用到了cuda6.5,但是实际训练时,使用GPU训练,又会出现问题.所以强迫症使然,我决定另外配置一个cpu_only的版本,编译时,不使用cuda. 于是网上查了查,很多小伙伴都是使用happynear配置的caffe-windows版本,并参照其博客中的步骤进行编译使用的: 如何快糙猛地在Windows下编译CAFFE…
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其它的功能文件,如:convert_imageset.cpp,train_net.cpp,test_net.cpp等也放在这个文件夹内.经过编译后,这些文件都被编译成了可执行文件,放在了./build/tools/文件夹内.因此我们要执行caffe程序,都需要加./…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 #caffe train --solver=*_solver.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,c…
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成.Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型.它将所有的信息数据定义为blobs,从而进行便利的操作和通讯.Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的. 1.blob Blobs封装了运行时的数据信息,提供了CPU和GPU的同步.从数学上来说,Blob就是一个N维数组.它是caffe中的数据基本单位,就像…
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr.如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学…
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等,而一个模型由多个层(layer)构成,每一层又由许多参数组成.所有的参数都定义在caffe.proto这个文件中.要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写. 层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行.今天我们就先介绍一下数据层. 数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从Blo…
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一.图片数据库 来源 我使用的图像是在项目的字符分割模块中分割出来的字符图像,灰度化并归一化至32*64,字符图片样本示例如下: 建立自己的数据文件夹 在./caffe/data/目录下建立自己的数据文件夹mine,并且在mi…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
折腾了几天,终于在windows系统上成功配置了Caffe环境,期间遇到了很多问题,每个问题的解决也都花了不少时间,查过挺多资料,感觉挺有意义,这里写篇博客记录一下. 原来我使用的CUDA版本是7.5,参照win7环境下CUDA7.5的安装.配置与测试(VS2010) 辛辛苦苦编译生成了caffe.exe,愣高兴了一晚,结果当我用caffe对手写字体库mnist进行训练时,悲剧了!运行时出现 CUDA driver version is insufficient for CUDA runtime…
1.基本概念 Caffe是一个比较流行的神经网络框架,它支持C++.Python等语言,容易上手,但是代码貌似不怎么好读,等有空我...;) 2.Windows10下的部署 我把我Windows下的编译完的bin上传了,如果opencv+cuda+cudnn配置好了的话应该可以直接用,替换掉caffe-windows-master/bin就行 链接: https://pan.baidu.com/s/1pLAW2Yf 密码: 1234 这里有官方编译完成的文件可供下载:https://github…