最近在研究JUnit4,大部分基础技术都是通过百度和JUnit的官方wiki学习的,目前最新的发布版本是4.11,结合代码实践,发现官方wiki的内容或多或少没有更新,Theory理论机制章节情况尤为严重,不知道这章wiki对应的是第几版,笔主在4.11版本中是完全跑不通的,因为接口结构已经改变了,而百度出来的博客文档更是只有Theory的基础部分,更具实际应用价值的扩展部分完全不见踪影,本文根据笔主实际编码总结经验,详细讲述如何使用4.11版JUnit的Theory理论机制. ps. 最近发现…
前言:译者实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享. 具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 "BEMS" 就可以跑起来了. # Make up some training data training_data = [( "the wall street journal reported…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…