bzoj(矩阵快速幂)】的更多相关文章

每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) ---------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   const int maxn = 1009;   int N,…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…
矩阵快速幂...+快速乘就OK了 -------------------------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   typedef long long ll;   ll MOD, a, c, x, n, g;   ll MUL(ll a, ll b) { ll ans = 0; for(; b; b >…
题意:定义Concatenate(1,N)=1234567……n.比如Concatenate(1,13)=12345678910111213.给定n和m,求Concatenate(1,n)%m. (1=<n<=10^18,1<=m<=10^9) 思路:令f[n]表示Concatenate(1,n).那么有: f[i]=f[i-1]*10+(i-1)+1   1<=i<=9 f[i]=f[i-1]*100+(i-1)+1  10<=i<=99 …… 因此可用矩…
这道到是不用看题解,不过太经典了,早就被剧透一脸了 这道题很像ac自动机上的dp(其实就是) 然后注意到n很大,节点很小,于是就可以用矩阵快速幂优化了 时间复杂度为o(m^3 *log n); 蒟蒻kpm写得少,改了好久= = CODE: #include<cstdio>#include<iostream>#include<cstring>#include<algorithm>using namespace std;int n,m,mod;#define m…
考试的时候想到了矩阵快速幂+快速幂,但是忘(bu)了(hui)欧拉定理. 然后gg了35分. 题目显而易见,让求一个数的幂,幂是斐波那契数列里的一项,考虑到斐波那契也很大,所以我们就需要欧拉定理了 p是素数,所以可以搞  然后我们用矩阵快速幂求出幂,然后快速幂即可解决问题 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> using namespace std; #de…
题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设S="ABCD",T有子串"A","AB","CD","BCD",那么步数最小方案是选"AB"再接上"CD",而不是提前断开选择"A"+"B…
1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Status][Discuss] Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2..…
注意到每个路线相邻车站的距离不超过K,也就是说我们可以对连续K个车站的状态进行状压. 然后状压DP一下,用矩阵快速幂加速运算即可. #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #define MAXN 140 #define MOD 30031 using namespace std; struct Matrix { int num[MAXN]…
[题意]给定n个点m边的无向图,求A到B恰好经过t条边的路径数,路径须满足每条边都和前一条边不同.n<=20,m<=60,t<=2^30. [算法]矩阵快速幂 [题解]将图的邻接矩阵进行矩阵快速幂就可以得到恰好经过t条边的路径数,但不能满足题目要求. 改为对原图的边进行相互连边,将经过同一个点的边两两连边,这样就是新邻接矩阵的t-1步. 为了满足题目要求,当两条边互为反向边时不连边即可. 最后乘上从A出发的边的矩阵,然后统计到达B的路径数. 复杂度O((m*2)^3 log t). #i…
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n.给定n,k,p,求满足要求的方案数%30031.n<=10^9,k<=p<=10. [算法]状压DP+矩阵快速幂 [题解]开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了.考虑相邻停靠点没有关键信息,只能状压. 因为车都是从头开到尾的,所以直接考虑i~i-p+1的…
[题意]给定n个禁忌字符串和字符集大小alphabet,保证所有字符在集合内.一个字符串的禁忌伤害定义为分割能匹配到最多的禁忌字符串数量(一个可以匹配多次),求由字符集构成的长度为Len的字符串的期望禁忌伤害.n<=5,1<=alphabet<=26,len<=10^9. [算法]AC自动机+期望+矩阵快速幂 [题解]参考:BZOJ2553: [BeiJing2011]禁忌 首先对于一个确定的字符串,每个匹配的禁忌字符串视为一条线段,就是经典的不重叠最大线段数问题. 通用的贪心做法…
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法]AC自动机+DP+矩阵快速幂 [题解]其实题意的数据范围不太清晰,反正开200个点就足够了. 因为要匹配禁忌串,所以对禁忌串集合建立AC自动机,标记禁忌串结尾节点,以及下传到所有能fail到的点(这些点访问到都相当于匹配了禁忌串). 令f[i][j]表示匹配到节点i,长度为j的串的数量,先预处理a[i][j…
思路:矩阵快速幂搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define PLI pair<LL, int> #define ull unsigned long long using namespace std; ; const int inf =…
思路:不能走走过来的路,变点交换跑矩阵快速幂. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define y1 skldjfskldjg #define y2 skldfjsklejg using namespace std; ; ; const int inf = 0x…
实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<queue> #include<cmath> #define ll long long using na…
很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n*T). 虽然本题的n<=10,但T最大可到1e9.行不通. 如果题目中的边的权值非0即1的话,显然1-n的长度为T的路径中数为 该图的邻接矩阵的T次幂. 实际上题目中的边权值<10. 可以用拆点的方法转化为边权值非0即1的情况. 即 将图中的每个点拆成至多9个点,首先将每个点的第i个点和第i+1…
传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ n $ 的正整数中,有多少个数是该方程的解 求出小于等于 $ 2^n $ 的正整数中,有多少个数是该方程的解,输出 $ mod $ $ 10^9+7 $ 的值. $ (n \leq 10^{18}, T \leq 1000) $ 题解 第一问 方程 $ x \oplus 3x = 2x $ 等价于…
读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用欧拉函数降一下幂,因为两个数一定互质因此不用再加一个phi(m),于是放心的乘吧宝贝!! #include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> #include &…
Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过某有向边的时间严格为给定的时间. Input 第一行包含两个整数,N T. 接下来有 N 行,每行一个长度为 N 的字符串. 第i行第j列为'0'表示从节点i到节点j没有边. 为'1'到'9'表示从节点i到节点j需要耗费的时间. Output 包…
注意到周期234的lcm只有12,也就是以12为周期,可以走的状态是一样的 所以先预处理出这12个状态的转移矩阵,乘起来,然后矩阵快速幂优化转移k/12次,然后剩下的次数暴力转移即可 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int mod=10000; int n,m,s,t,k,x,y,nf,T,w[60]; struct jz { int a[6…
矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!! 其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式,然后按每一位分别矩阵快速幂即可 矩阵: f[i-1] w[i] 1 1 f[i] i-1 0 1 1 = i 1 0 0 1 1 #include<iostream> #include<cstdio> using namespace std; long long n,mod,t; lo…
思路: T的最小公倍数是12 那么12以内暴力 整除12 的部分用矩阵快速幂 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m,st,ed,k,nfish,T,p[5],can[13][55]; struct Matrix{ int a[55][55]; void init(){memset(a,0,sizeof(a)…
思路: ax+b cx+d 构造矩阵+矩阵快速幂 (需要加各种特判,,,,我好像加少了- ) //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define int long long const int mod=1000000007; int n,m,a,b,c,d;char N[1000500],M[1000500]; stru…
题意: 求长度为n的不含长为m的指定子串的字符串的个数 1s, n<=1e9, m<=50 思路: 长见识了.. 设那个指定子串为s f[i][j]表示长度为i的字符串(其中后j个字符与s的前j个字符一致的情况下)的方法数 若匹配到s串长度为i的后缀加一个字符num可以组成最长长度为j的后缀,设a[i][j]为num的方法数 例如,s为12312,a为 9 1 0 0 0 08 1 1 0 0 08 1 0 1 0 09 0 0 0 1 08 1 0 0 0 1 (i,j都是从0到m-1) 如…
[BZOJ2004]公交线路(动态规划,状态压缩,矩阵快速幂) 题面 BZOJ 题解 看到\(k,p\)这么小 不难想到状态压缩 看到\(n\)这么大,不难想到矩阵快速幂 那么,我们来考虑朴素的\(dp\) 设\(f[i][j]\)表示当前位置为\(i\),前面的\(P\)个位置的状态为\(j\) 其中,状态的含义是某个公交线路最后的停靠站 如果是最后的停靠站就是\(1\),否则是\(0\) 那么,任意状态中只存在\(k\)个\(1\) 并且表示\(i\)的二进制位一定是\(1\) 所以状态相当…
[BZOJ1009]GT考试(KMP算法,矩阵快速幂,动态规划) 题面 BZOJ 题解 看到这个题目 化简一下题意 长度为\(n\)的,由\(0-9\)组成的字符串中 不含串\(s\)的串的数量有几个 很显然,如果组成的字符串和\(s\)串做\(KMP\)的匹配的话 是不能匹配到最后一位的 所以,我们想到一个很显然的方程 \(f[i][j]\)表示当前做了第\(i\)位,在\(s\)串中匹配到了第\(j\)位 每次枚举下一位放的数字 以及每一位的位置 相当于做\(KMP\)的匹配 然后进行转移…
[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设\(f[i]\)表示当前除了到第\(i\)列的方案数,转移是考虑用\(2*1\)竖着覆盖一列还是\(2\)个\(1*2\)横着覆盖两列,得到转移\(f[i]=f[i-1]+f[i-2]\). 现在回假设要在这一行放上第二个\(1*1\),那么直到前一个\(1*1\)所在列之前的所有方块都被唯一确定了…
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{b-\sqrt d}{2}\). 发现\(A+B=b,AB=\frac{b^2-d}{4}\). 要求的东西是\(A^n\),我们变成\(A^n+B^n-B^n\). 分开考虑,发现\(A^n+B^n=(A^{n-1}+B^{n-1})(A+B)-(A^{n-2}+B^{n-2})AB\),这样子前…
[BZOJ4000][TJOI2015]棋盘(矩阵快速幂,动态规划) 题面 BZOJ 洛谷 题解 发现所有的东西都是从\(0\)开始编号的,所以状压只需要压一行就行了. 然后就可以随意矩乘了. #include<iostream> #include<cstdio> #include<cstring> using namespace std; #define uint unsigned int inline int read() { int x=0;bool t=fals…