C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 = 1; F2 …
Codeforces 题目传送门 & 洛谷题目传送门 你可能会疑惑我为什么要写 *2400 的题的题解 首先一个很明显的想法是,看到斐波那契数列和 \(10^9+9\) 就想到通项公式,\(F_i=\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n)\).并且 \(5\) 在模 \(10^9+9\) 意义下的二次剩余存在,为 \(383008016\). 我们建两棵线段树分别维护展开式中 \((\dfra…
In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2). DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: a1, a2, ...,…
DZY Loves Fibonacci Numbers Time Limit:4000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Status Appoint description:  System Crawler  (2014-07-14) Description In mathematical terms, the sequence Fn of Fibonacci numbers is defi…
题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是mark一下吧. 我是这样考虑这个问题的,首先准备三个数组F,G,K,功能后面解释. 然后对它们有这样一个计算: F[0] = G[0] = 0; F[1] = 1; G[1] = 0; K[0] = 1; K[1] = 0; for(int i=2; i<N; i++){ F[i] = (F[i-…
Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 = 1; F2 = 1; Fn = Fn - 1 + Fn - 2 (n > 2). DZY loves Fibonacci numbers very much. Today DZY gives you an array consisting of n integers: …
假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. f[n] 是斐波那契数列 也就是我们如果知道一段区间的前两个数增加了多少,可以很快计算出这段区间的第k个数增加了多少 通过简单的公式叠加也能求和 F[n]  = f[n - 1] * b + f[n - 2] * a F[n - 1] = f[n - 2] * b + f[n - 3] * a ..…
The Fibonacci numbers are the numbers in the following integer sequence. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….. In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation Fn = Fn-1 + Fn-2with seed va…
洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即得易见平凡,仿照上例显然.留作习题答案略,读者自证不难. 反之亦然同理,推论自然成立,略去过程QED,由上可知证毕. 其实就是我不会 而且这个性质对于负数下标也是成立的. 负数下标的斐波那契数怎么求?你从\(f_{-1}+f_0=f_1\)可以得到\(f_{-1}=1\),后面的你也倒推回去就可以了…
# Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b) a, b = b, a+b #右边表达式的执行顺序是从左向右 # # # # # # #end关键字可以把结果输出在同一行,或者在输出末尾添加不同的字符 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b, end=",")…