代码示例: import numpy as np import matplotlib.pyplot as plt def loadDataSet(): dataMat = [];labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) label…
利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot as plt import random from sklearn.linear_model import LogisticRegression def stocGradAscent1(dataMatrix, classLabels, numIter=150): #随机梯度上升算法 m,n = np…
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里的循环神经网络,无奈理论太艰深,只能从头开始开始慢慢看,因此产生写一个项目的想法,把机器学习和深度学习里关于分类的算法整理一下,按照原理写一些demo,方便自己也方便其他人.项目地址:https://github.com/LiuRoy/classfication_demo,目前实现了逻辑回归和神经网…
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测病马的生死. 准备数据:处理被据中的缺失值 因为有时候数据相当昂贵,扔掉和重新获取 都是不可取的,所以必须采用一些方法来解决这个问题. 下面给出了一些可选的做法: 这里选择实数0来替换所有缺失值,恰好能适用于Logistic回归.这样做的直觉在 于 ,我们需要的是一个在更新时不会影响系数的值.回归系…
原创作品出处 原始出处 .作者信息和本声明.否则将追究法律责任.http://sbp810050504.blog.51cto.com/2799422/1608064 Logistic回归与梯度上升算法 在<机器学习实战>一书的第5章中讲到了Logistic用于二分类问题.书中只是给出梯度上升算法代码,但是并没有给出数学推导.故哪怕是简单的几行代码,依然难以理解. 对于Logistic回归模型而言,需要读者具有高等数学.线性代数.概率论和数理统计的基础的数学基础.高等数学部分能理解偏导数即可:线…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
经过对Logistic回归理论的学习,推导出取对数后的似然函数为 现在我们的目的是求一个向量,使得最大.其中 对这个似然函数求偏导后得到 根据梯度上升算法有 进一步得到 我们可以初始化向量为0,或者随机值,然后进行迭代达到指定的精度为止.…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
最近学习Logistic回归算法,在网上看了许多博文,笔者觉得这篇文章http://blog.kamidox.com/logistic-regression.html写得最好.但其中有个关键问题没有讲清楚:为什么选择-log(h(x))作为成本函数(也叫损失函数). 和线性回归算法相比,逻辑回归的预测函数是非线性的,不能使用均方差函数作为成本函数.因此如何选择逻辑回归算法的成本函数,就要多费一些事. 在正式讨论这个问题之前,先来复习一些基础知识. 一些常见函数的导数 $$ \frac{dy}{d…
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度下降法解决MLA.然后分析加入不同范数(L0, L1, L2)对线性回归的影响.其次,另外一个重点是Logistic回归,他们分别用来 做回归和分类.线性回归与Logistic回归的区别,以及由Logistic回归引出的SoftMax回归及其用途. 一.线性回归 (1)残差 对于线性回归模型,我们一…
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这类 我们的目标是求出θ,使得这个代价函数J(θ)的值最…
本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有样本的特征向量组成的矩阵 x(i) 是第i个样本包含的所有特征组成的向量x(i)=(x(i)1,x(i)2...,x(i)n) y(i) 第i个样本的label,每个样本只有一个label,y(i)是标量(一个数值) hθ(x(i)) :拟合函数,机器学习中可以用多种类型的拟合函数 θ 是函数变量,…
利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 训练分类器时的做法就是寻找最佳拟合参数,使用的时最优化算法. 优点:计算代价不高,利于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 适用数据类型:数值型和标称型数据. 最优化算法:1基本的梯度上升法 2改进的梯度上升法 海维塞德阶跃函数=单位阶跃函数(该函数在跳跃点上从0瞬间跳跃到1),这个顺时跳跃过程很难处理.幸好,另一个函数也有类似的性质,而且数学上更容易处理,这就是Sigmoid函数.…
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,结果是用户要么点击要么不点击. 通常两类使用类别标号0和1表示,0表示不发生,1表示发生. 问题引入 例如:有100个手机,其中有30个是你喜欢的,70个是不喜欢的.现预测你对第101个手机的喜好.这是一…
# Author Qian Chenglong from numpy import * from numpy.ma import arange def loadDataSet(): dataMat = [] labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0, float(lineArr[0]), float(li…
http://sbp810050504.blog.51cto.com/2799422/1608064/ http://blog.csdn.net/dongtingzhizi/article/details/15962797 http://blog.csdn.net/llp1992/article/details/45114421 https://www.qcloud.com/community/article/180954?fromSource=gwzcw.107192.107192.10719…
随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法) 梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度太高了. 随机梯度上升算法伪代码: 所有回归系数初始化为1 对数据集中每个样本 计算该样本的梯度 使用alpha*gradient更新回归系数值 返回回归系数值 def stocGradAscent0(dataMatrix, c…
怎么样计算偏导数来实现logistic回归的梯度下降法 它的核心关键点是其中的几个重要公式用来实现logistic回归的梯度下降法 接下来开始学习logistic回归的梯度下降法 logistic回归的公式 现在只考虑单个样本的情况,关于该样本的损失函数定义如上面第三个公式,其中a是logistic回归的输出,y是样本的基本真值标签值, 下面写出该样本的偏导数流程图 假设样本只有两个特征x1和x2 为了计算Z,我们需要输入参数w1和w2和b 因此在logistic回归中,我们要做的就是变换参数w…
In [183]:           def loadDataSet(): dataMat = [] labelMat = [] fr = open('testSet.txt') for line in fr.readlines(): lineArr = line.strip().split() dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])]) labelMat.append(int(lineArr[2])) return da…
目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468.html 返回目录 Logistic回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1 # -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext…
目录 一元线性回归.多元线性回归.Logistic回归.广义线性回归.非线性回归的关系 什么是极大似然估计 逻辑斯谛回归(Logistic回归) 多类分类Logistic回归 Python代码(sklearn库) 一元线性回归.多元线性回归.逻辑斯谛回归.广义线性回归.非线性回归的关系 通过上图(插图摘自周志华<机器学习>及互联网)可以看出: 线性模型虽简单,却拥有着丰富的变化.例如对于样例,当我们希望线性模型的预测值逼近真实标记y时,就得到了线性回归模型:.当令模型逼近y的衍生物,比如时,就…
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…
在手撕机器学习系列文章的上一篇,我们详细讲解了线性回归的问题,并且最后通过梯度下降算法拟合了一条直线,从而使得这条直线尽可能的切合数据样本集,已到达模型损失值最小的目的. 在本篇文章中,我们主要是手撕Logistic回归,这个在李航老师的<统计学习方法>一书中也叫做为逻辑斯谛回归.听到回归一词,有的读者可能会想,上一篇线性回归求解的是拟合问题,这篇文章手撕的是Logistic回归,会不会也是一个拟合问题?只不过使用到的算法原理不同而已,而求解的问题是一致的??? 其实不然,Logistic回归…
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数,以用于分类.) 算法原理 首先要提到的概念是回归. 对于回归这个概念,在以后的文章会有系统而深入的学习.简单的说,回归就是用一条线对N多数据点进行一个拟合,这个拟合的过程就叫做回归. Logistic回归分类算法就是对数据集建立回归公式,以此进行分类. 而至于如何寻找最佳回归系数,或者说是分类器的…
判断学习速率是否合适?每步都下降即可.这篇先不整理吧... 这节学习的是逻辑回归(Logistic Regression),也算进入了比较正统的机器学习算法.啥叫正统呢?我概念里面机器学习算法一般是这样一个步骤: 1)对于一个问题,我们用数学语言来描述它,然后建立一个模型,例如回归模型或者分类模型等来描述这个问题: 2)通过最大似然.最大后验概率或者最小化分类误差等等建立模型的代价函数,也就是一个最优化问题.找到最优化问题的解,也就是能拟合我们的数据的最好的模型参数: 3)然后我们需要求解这个代…
参考<机器学习实战> 利用Logistic回归进行分类的主要思想: 根据现有数据对分类边界线建立回归公式,以此进行分类. 分类借助的Sigmoid函数: Sigmoid函数图: Sigmoid函数的作用: 将所有特征都乘上一个回归系数,然后将所有结果值相加,将这个总和代入Sigmoid函数中,进而得到一个0-1之间的数值.任何大于0.5的数据被分1类,小于0.5分入0类. 综上,Sigmoid的输入可以记为z: 所以向量w即是我们要通过最优化方法找的系数. w向量的求解: 1).梯度上升法(思…
原文:http://blog.csdn.net/dongtingzhizi/article/details/15962797  Logistic回归总结 作者:洞庭之子 微博:洞庭之子-Bing (2013年11月) PDF下载地址:http://download.csdn.net/detail/lewsn2008/6547463 1.引言 看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了<机器学习实战>中的Logist…
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ(x(i))-y(i) ) ] * xi .经过查找资料才知道,书中省去了大量的理论推导过程,其中用到了线性函数.sigmoid 函数.偏导数.最大似然函数.梯度下降法.下面让我们一窥究竟,是站在大神的肩膀描述我自己的见解. 1.2 Logistic 回归的引入 Logistic 回归是概率非线性模型…
logistic回归 1.算法思想 根据给定的数据集确定分类的边界.这个分类的边界就是我们所要求的回归函数. 所谓的回归其实就是最佳拟合,回归函数就是确定最佳回归参数,然后对不同的特征赋予不同的权重 2.算法基础 (1)所采用的映射函数是sigmoid函数,sigmoid函数比0-1函数(正方形波)更好的原因是sigmoid函数在局部上看是平滑的,而在全局上看是接近跳跃的.而0-1函数它本身是跳跃的,不够平滑,误差比较大. (2)根据回归函数计算出了一个结果,然后代入sigmoid函数,就可以得…
参数设置 α: 梯度上升算法迭代时候权重更新公式中包含 α :  http://blog.csdn.net/lu597203933/article/details/38468303 为了更好理解 α和最大迭代次数的作用,给出Python版的函数计算过程. # 梯度上升算法-计算回归系数 # 每个回归系数初始化为1 # 重复R次: # 计算整个数据集的梯度 # 使用α*梯度更新回归系数的向量 # 返回回归系数 def gradAscent(dataMatIn, classLabels,alpha=…