TensorFlow学习笔记12-word2vec模型】的更多相关文章

深度模型的优化 回顾概念: 代价函数时训练集上损失函数的平均: \[J(\theta)=E_{(x,y)\sim \hat{p}_{data}}L(f(x;\theta),y) \tag{1}\] 引入概念: 概念 描述 批量梯度算法 使用整个训练集的优化算法,可计算更精确的梯度估计,但回报小于线性 批量batch 整个数据集中的一组样本构成的子集 随机算法(在线算法) 每次只使用一个样本的优化算法,难以充分利用多核结构 小批量随机方法 介于批量梯度算法和在线梯度算法之间的方法 小批量 随机抽取…
图像定位 图像定位是指在图像中将我们需要识别的部分使用定位框进行定位标记,本次主要讲述如何使用tensorflow2.0实现简单的图像定位任务. 我所使用的定位方法是训练神经网络使它输出定位框的四个顶点的坐标,通过这四个坐标来定位需要识别对象的位置. 数据集:https://pan.baidu.com/s/1dv-r19KixYhA1CfX2n06Hg 提取码:2kbc (数据集中的压缩文件需要解压) 1.数据读入 1.1图片读入 图片的读入在前面的博客中已经展示过很多次了,这里不再赘述,详情可…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早期一度被认为是一种无监督的特征学习(Unsuperbised Feature Learning),模仿了人脑的对特征逐层抽象提取的过程.这…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC2014比赛分类项目的第二名(第一名是GoogLeNet,也是同年提出的)和定位项目的第一名. VGGNet探索了卷积神经网络的深度与其性能直接的关系,通过反复堆叠 3*3 的小型卷积核和 2*2 的最大池化层,VGGNet成功的构筑了16~19层深的卷积神经网络.VGGNet相比之前的 state-of…
[TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) TensorFlow是目前最火的深度学习框架. TensorFlow的环境搭建官网和其他博客都有较多例子,这里不再重复. 本机实验环境macOS Sierra 10.12.3tensorflow 1.0.0 CPU版本Python 3.6.0 TensorFlow测试样例 首先TensorFlow支持C.C++…
tf.data卷积神经网络综合应用实例 使用tf.data建立自己的数据集,并使用CNN卷积神经网络实现对卫星图像的二分类问题. 数据下载链接:https://pan.baidu.com/s/141zi1BvDU6rHsq5VKgRl4Q  提取码:2kbc 1.使用tf.data建立数据集 使用tf.data将已有的图片打上标签,并将数据分为训练集与测试集用于训练神经网络. 下面将逐步介绍如何建立数据集. 1.1读取windows下的文件路径 首先,头文件走一波(python中应该叫导入模块)…
使用CNN卷积神经网络(2) 使用Tensorflow搭建简单的CNN卷积神经网络对fashion_mnist数据集进行分类 不了解是那么是CNN卷积神经网络的小伙伴可以参考上一篇博客(Tensorflow学习笔记No.4.1) 2.Tensorflow卷积神经网络相关API简介 2.1.keras.layers.Conv2D()二维卷积层 例如: model.add(keras.layers.Conv2D(128, (3, 3), activation = 'relu', padding =…
tf.data与自定义训练综合实例 使用tf.data自定义猫狗数据集,并使用自定义训练实现猫狗数据集的分类. 1.使用tf.data创建自定义数据集 我们使用kaggle上的猫狗数据以及tf.data来建立自己的猫狗数据集. tf.data详细的使用方法中在Tensorflow学习笔记No.5中以经介绍过,这里只简略讲述. 打开kaggle中的notebook,点击右侧"+Add data",搜索如下数据集,并点击右侧"Add". 随后Cat and Dog这个数…