矩阵快速幂+二分 poj3233】的更多相关文章

#include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #include <queue> #include <map> #include <set> #include <alg…
http://poj.org/problem?id=3233 题目大意:给定矩阵A,求A + A^2 + A^3 + … + A^k的结果(两个矩阵相加就是对应位置分别相加).输出的数据mod m.k<=10^9.这道题两次二分,相当经典.首先我们知道,A^i可以二分求出.然后我们需要对整个题目的数据规模k进行二分.比如,当k=6时,有:A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3)应用这个式子后,规模…
矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+Ak/2+A(k/2)*(A+A2+...+Ak/2)    k为偶数时: sum=A+A2+...+A(k-1)/2+A((k-1)/2)*(A+A2+...+A(k-1)/2)+Ak    k为奇数时. 然后递归二分求和 PS:刚开始mat定义的是__int64,于是贡献了n次TLE... #i…
题意:求S=(A+A^2+A^3+...+A^k)%m的和 方法一:二分求解S=A+A^2+...+A^k若k为奇数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2))+A^k若k为偶数:S=(A+A^2+...+A^(k/2))+A^(k/2)*(A+A^2+...+A^(k/2)) 也可以这么二分(其实和前面的差不多):S(2n)=A+A^2+...+A^2n=(1+A^n)*(A+A^2+...+A^n)=(1+A^n)*S(n)S(2n+1…
矩阵 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submission(s) : 7   Accepted Submission(s) : 4 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description 假设你有一个矩阵,有这样的运算A^(n+1) = A^(n)*A (*代…
M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗?   Input 输入包含多组测试数据: 每组数据占一行,包含3个整数a…
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞就能搞出来了 (我是看的题解才A的,,, 中间乱搞的时候犯了一些脑残的错误) // by SiriusRen #include <cstdio> #include <cstring> using namespace std; int n,mod,k; struct matrix{int…
http://acm.hdu.edu.cn/showproblem.php?pid=1588 Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an…
题意:给你一个矩阵A,求S=A+A^2+A^3+...+A^k. 其实这个当时我看着毫无头绪,看了他们给的矩阵发现好!精!妙! 我们这样看 是不是有点思路! 没错!就是右上角,我们以此类推可以得到A+A^2+A^3+...+A^k+E,我们只要再减去个单位矩阵就好了. 但是!我矩阵里面怎么套矩阵!肿!么!办!其实很简单,一个n*n的矩阵,我们可以把它看成(2*n)*(2*n)的矩阵,就把他分成了四份,就如上图所示,就很简单了! 注意下小坑点:减了可能就负了,后面减完要加个mod(ง •_•)ง…
题意:给一个递推式S(n) = a1*S(n-1)+...+aR*S(n-R),要求S(k)+S(2k)+...+S(nk)的值. 分析:看到n的大小和递推式,容易想到矩阵快速幂.但是如何转化呢? 首先看到 我们用A表示上面的递推式中的R*R的那个矩阵,那么对于前面那个向量,每次乘上A^k之后都会变成(S(n + k)...)那么对于初始的向量( S(R) S(R - 1) ... S(1) ) 如果这个向量当中包括 S(k) 我们可以直接对于每次要算的 S( i * k) 求和也就是说这个向量…