给你一个长度为\(n\)序列\(A\),有\(m\)个操作,操作分为两种: 输入\(x,y,c\),表示对\(i\in[x,y]\),令\(A_{i}=min(A_{i},c)\) 输入\(x,y,k\),表示询问区间 \([x,y]\) 中的第\(k\)小数 Solution 考虑分块,块内排序,同时记录这一块被整体取过的 \(min\) 的最小值 对于修改,对不完整的块,我们直接暴力在原序列上修改然后重建块,标记不动 对完整的块,只修改标记 这样修改的时间复杂度为 \(O(k \log k)…
题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y,k$,表示询问区间$[x,y]$中的第$k$小数 思路:数据范围不是很大,可以分块来做,记录每个块已经更新过的最小值$imin[]$,询问时二分答案,然后求出$[x,y]$区间中小于等于$mid$的数的个数$cnt$,通过判断$cnt$与$k$的大小来改变$l,r$即可 #include <ios…
求 \(K\) 是多少个 \(n\) 元置换的周期.\(T\leq 100, n\leq 50, K \leq 10^{18}\) Solution 置换可以被试做若干个环组成的有向图,于是考虑 dp,设 \(f[i]\) 表示 \(n=i\) 时的答案,则 \[ f[i]=\sum_{j=1}^n [j|K] \cdot C_{i-1}^{j-1} \cdot (j-1)!\cdot f[i-j] \] #include <bits/stdc++.h> using namespace std…
有一个猜奖者和一个主持人,一共有 \(n\) 扇门,只有一扇门后面有奖,主持人事先知道哪扇门后有奖,而猜奖者不知道.每一轮,猜奖者选择它认为的有奖概率最大(如果有多个最大,随机选一个)的一扇门,主持人从剩下的且门后没有奖的门中随机打开一扇.直到剩两扇门时,猜奖者做出的选择就是他最后的选择. 现在由你来安排主持人每次打开哪一扇门,猜奖者不知道有内幕,他还认为主持人是从可以打开的门中随机一扇打开.你要使猜奖者获奖概率最低,求这个概率. (Discover Probability,你的快乐老家 ) S…
有 \(n\) 个数构成的序列 \({a_i}\),要将它划分为 \(k\) 段,定义每一段的权值为这段中 \((i,j) \ s.t. \ i<j,\ a_i=a_j\) 的个数,求一种划分方案,使得各段的权值和最小. \(n \leq 10^5, k \leq min(n,20), a_i \leq n\) 设 \(f[i][j]\) 表示将 \(a_{1..j}\) 分为 \(i\) 段的最小价值,则很容易得到转移方程 \[ f[i][j]=\min (f[i-1][k]+cost(k+1…
给定 \(n\) 个数 \(m_i\),求 \((x_1,x_2,...,x_n)\) 的个数,使得 \(x_1 \ xor\ x_2\ xor\ ...\ xor\ x_n = k\),且 \(0 \leq x_i \leq m_i\) Solution 从最高位开始看起,毫无疑问,如果 \(m_i\) 的某一位是 \(0\),那么 \(x_i\) 的这一位只能填 \(0\),所以只有那些 \(m_i\) 最高位是 \(1\) 的才具有选择权. 考虑从最高位数起,哪一位 \(pos\) 开始,…
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成树的权值和. Solution 很容易想到,设 \(G_1\) 中每条边的权值,这条边在 \(G_2\) 中出现则权值为 \(1\),否则权值为 \(0\). 现在就真的是求所有生成树的边权和的权值和了. 然而标准的 Matrix-Tree Theorem 求的是生成树的边权积的和. 现在我们定义每…
感谢这道题告诉我KM求的是 完备 最大权匹配 :( #include <bits/stdc++.h> using namespace std; #define reset(x) memset(x,0,sizeof x) #define int long long // Init: init() !!!!! // Input: make(u,v,cap,cost) // Solver: solve(s,t) // Output: ans, cost namespace flow { const…
定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任何一条边 (u,v),都有 f(u)≠f(v). 定义函数 g(n,k) 的值为所有包含 n 个点的无自环.无重边的 k 可染色无向图中的边数最大值.举例来说,g(3,1)=0,g(3,2)=2,g(3,3)=3. 现在给出三个整数 n,l,r,你需要求解:(\sum_{i=l}^rg(n,i))mod998244354 Solution 把 \(n\) 个点分成 \(m\) 份,尽…
按题意模拟,又乱又烦,没什么可说的 #include <bits/stdc++.h> using namespace std; #define int long long int n,m,w,x[5005],y[5005],c[5005]; int ac[15]; signed main() { cin>>n>>m>>w; for(int i=1;i<=w;i++) cin>>x[i]>>y[i]>>c[i]; fo…