An autoencoder neural network is an unsupervised learning algorithm that applies backpropagation, setting the target values to be equal to the inputs. I.e., it uses . Here is an autoencoder: The autoencoder tries to learn a function . In other words,…
In this problem set, you will implement the sparse autoencoder algorithm, and show how it discovers that edges are a good representation for natural images. Step 1: Generate training set Step 2: Sparse autoencoder objective Step 3: Gradient checking…
(一)Autoencoders and Sparsity章节公式错误: s2 应为 s3. 意为从第2层(隐藏层)i节点到输出层j节点的误差加权和. (二)Support functions for loading MNIST in Matlab文件名错误 % Change the filenames if you've saved the files under different names % On some platforms, the files might be saved as %…
Deep Learning 教程翻译 非常激动地宣告,Stanford 教授 Andrew Ng 的 Deep Learning 教程,于今日,2013年4月8日,全部翻译成中文.这是中国屌丝军团,从2月20日战役打响之日,经过 50 天的团结奋战,取得的全面彻底的胜利. 此次战役的巨大胜利,之所以令人激动,有三方面的原因. 1. 在 Stanford 网站这个规模不算大,但是行业影响可观的舞台上,彰显了中国屌丝们,旺盛的求战热情,迅猛顽强的战斗作风,训练有素的战术技能. 2. 在…
Gradient checking and advanced optimization In this section, we describe a method for numerically checking the derivatives computed by your code to make sure that your implementation is correct. Carrying out the derivative checking procedure describe…
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with Sparse Autoencoders sparseAutoencoderLinearCost.m function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ... lam…