本文简述了以下内容: 什么是词表示,什么是表示学习,什么是分布式表示 one-hot representation与distributed representation(分布式表示) 基于distributional hypothesis的词表示模型 (一)syntagmatic models(combinatorial relations):LSA(基于矩阵) (二)paradigmatic models(substitutional relations):GloVe(基于矩阵).NPLM(基…
Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aistudio.baidu.com/aistudio/projectdetail/5002782?contributionType=1 相关项目参考: 关于图计算&图学习的基础知识概览:前置知识点学习(PGL)[系列一] https://aistudio.baidu.com/aistudio/projec…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
写essay的时候,我们会常常因为各式各样的要求词而头疼:discuss,describing,evaluate,explain,等等,他们之间有何区别?如果你在思考这个问题,那么这篇文章就是为你写的: 现在,我们不得不承认:写ESSAY不是一件容易的事儿.他需要我们进行大量的阅读的同时,精确地概括出文献中心思想,同时对所有文献的错综复杂的关系进行逻辑分析,最后,把之前所有的努力表达出来,呈现在你的essay中. 但是,打造你的argument这件事情,并不是一个技术活.事实上,任何一个新手也可…
上一篇 HotSpot的类模型(2) 介绍了类模型的基础类Klass的重要属性及方法,这一篇介绍一下InstanceKlass及InstanceKlass的子类. 2.InstanceKlass类 每个InstanceKlass对象表示一个具体的Java类(这里的Java类不包括Java数组).InstanceKlass类及重要属性的定义如下: class InstanceKlass: public Klass { ... protected: // Annotations for this c…
我们继续接着上一篇 HotSpot的类模型(3)分析,这次主要分析表示java数组的C++类. 4.ArrayKlass类 ArrayKlass继承自Klass,是所有数组类的抽象基类,类及重要属性的定义如下: class ArrayKlass: public Klass { ... private: int _dimension; // This is n'th-dimensional array. Klass* volatile _higher_dimension; // Refers th…
本文简述了以下内容: 神经概率语言模型NPLM,训练语言模型并同时得到词表示 word2vec:CBOW / Skip-gram,直接以得到词表示为目标的模型 (一)原始CBOW(Continuous Bag-of-Words)模型 (二)原始Skip-gram模型 (三)word analogy 神经概率语言模型NPLM 上篇文简单整理了一下不同视角下的词表示模型.近年来,word embedding可以说已经成为了各种神经网络方法(CNN.RNN乃至各种网络结构,深层也好不深也罢)处理NLP…
1.Attention Model 概述 深度学习里的Attention model其实模拟的是人脑的注意力模型,举个例子来说,当我们观赏一幅画时,虽然我们可以看到整幅画的全貌,但是在我们深入仔细地观察时,其实眼睛聚焦的就只有很小的一块,这个时候人的大脑主要关注在这一小块图案上,也就是说这个时候人脑对整幅图的关注并不是均衡的,是有一定的权重区分的.这就是深度学习里的Attention Model的核心思想. 人脑的注意力模型,说到底是一种资源分配模型,在某个特定时刻,你的注意力总是集中在画面中的…
语音识别简介 语音识别(speech recognition)技术,也被称为自动语音识别(英语:Automatic Speech Recognition, ASR).计算机语音识别(英语:Computer Speech Recognition)或是语音转文本识别(英语:Speech To Text, STT),其目标是以计算机自动将人类的语音内容转换为相应的文字. 按照不同纬度如下分类: 按词汇量(vocabulary)大小分类: 小词汇量:几十个词: 中等词汇量:几百个到上千个词 大词汇量:几…
介绍词向量word2evc概念,及CBOW和Skip-gram的算法实现. 项目链接: https://aistudio.baidu.com/aistudio/projectdetail/5009409 在自然语言处理任务中,词向量(Word Embedding)是表示自然语言里单词的一种方法,即把每个词都表示为一个N维空间内的点,即一个高维空间内的向量.通过这种方法,实现把自然语言计算转换为向量计算. 如 图1 所示的词向量计算任务中,先把每个词(如queen,king等)转换成一个高维空间的…