【UOJ#22】【UR#1】外星人】的更多相关文章

LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考虑一个排列真正的有效取模只有当 \(x\geq a_i\)时才行 所以x通过一个排列真正有效的数字必然是从大到小排列的. 求第一问 不难想到将模数从大到小排列 设f[i][j]表示到达第i个模数此时值为j是否可行. 这样dp下来我们只需要取出小于minn的那个可行值最大的即可. 考虑方案数 这样dp同样有效.…
[UOJ#22][UR #1]外星人(动态规划) 题面 UOJ 题解 一道简单题? 不难发现只有按照从大往小排序的顺序选择的才有意义,否则先选择一个小数再去模一个大数是没有意义的. 设\(f[i][j]\)表示考虑了前\(i\)个数,模完之后是\(j\)的方案数. 转移的时候枚举这个数是模还是不模,如果不模的话就要把它放到后面某个小数的后面,方案数是\(n-i\). #include<iostream> #include<cstdio> #include<cstdlib>…
Uoj 22 外星人 注意到一个数只有 \(\%\) 了小于等于自己的数时,才可能有变化,否则可以随意安排,不会对最后最优解造成影响. 用 \(f[x]\) 表示给一个数 \(x\) ,仅用 \(a[i]<=x\) 的 \(a[i]\) 时,得到的最大数.用 \(g[x]​\) 表示最优情况下的方案数目. 转移时,对于会造成影响的数,我们枚举第一个位置填的数,对于不会造成影响的数,就任意给它们钦定位置. 记 \(p=x\ mod\ a[i]\) ,\(count_k\) 表示小于等于 \(k\)…
2044年,Picks建成了人类第一台基于量子理论的银河系信息传递机. Picks游遍了宇宙,雇用了 n 个外星人来帮他作为信息传递机的中转站.我们将外星人依次编号为 1 到 n,其中 i 号外星人有 ai 根手指. 外星人都是很低级的,于是Picks花费了很大的精力,才教会他们学会扳手指数数. Picks现在准备传递 x 个脉冲信号给VFleaKing,于是他把信号发给1号外星人,然后1号外星人把信号发送给2号外星人,2号外星人把信号发送给3号外星人,依次类推,最后n号外星人把信号发给VFle…
题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \text{mod}\ a_{p_i}$ ,最终得到一个数.求所有排列中能够得到的这个数的最大值,以及有多少种排列可以得到这个值. $n\le 1000$ ,$x\le 5000$ . 题解 组合数学+dp 由于 $a\ \text{mod}\ b<b$ ,因此每次产生影响(即 $x\ \text{mod}…
传送门 分析 我们发现一个很神的性质,就是对于一个数如果放在它之前的数小于它那它一定对答案没有贡献 于是我们用dp[i][j]表示从大往小考虑了前i个数,当前答案是j的方案数 我们知道它由两种情况转移来,一种是把这个数放上,另一种是在后面的位置选任意一个给它 代码 #include<bits/stdc++.h> using namespace std; #define int long long ; ],dp[][],M; inline bool cmp(int x,int y){ retur…
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i)\)的和,所以我们尝试通过反演将\(x(i)\)表达成一系列\(b(i)\)的和的形式,那么就可以解出来了. 然后一个简单的化简:\(gcd(i,j)^c\cdot lcm(i,j)^d=i^d\cdot j^d\cdot gcd(i,j)c-d\). \[ \displaystyle b_i=\…
https://www.cnblogs.com/Gloid/p/10629779.html 这一场的D. #include<bits/stdc++.h> using namespace std; #define N 1010 #define M 5010 #define P 998244353 int n,m,a[N],f[N][M],fac,inv[N]; int main() { #ifndef ONLINE_JUDGE freopen("b.in","r&q…
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\)次询问某个数组中的第几个数的函数. \(n_a,n_b,n_c\leq 10^5\). \(Solution\) 显然的做法是先枚举这个数在哪个数组中,再在三个数组中二分.这个次数是\(log^2\)的. 我们如果每次确定一些数比第\(k\)个数小,那我们可以直接将这些数删掉. (可以假设数组是无限…
题意: 给出一个排列$A$,问是否能够经过以下若干次变换变为排列$B$ 变换:若${A_i> A_i+1}$,可以${swap(A_i,A_i+1)}$ 考虑一个数字从A排列到B排列连出来的路径与其他数字是否相交,相交就表示大小关系需要判断,(类似于二维偏序)用线段树维护区间最小值即可. 权值为1,2的线分别与权值为4的线相交,而且4在它们左边,所以需要判断它们的大小关系,发现${4>1}$,${4>2}$,所以满足条件. #include<iostream> #includ…
[APIO2014]连珠线 考虑一组以 \(x\) 为中点的蓝边,有两种可能: \[son[x]->x->fa[x] \] \[son[x]->x->son[x] \] 其中若有两个儿子间连边的点不存在祖先关系,那么它们就无法被连接到一起 因此所有的儿子间连边的点一定在一条链上 因此,若以链的最低点为根,那么所有儿子间连边的点的情况可以归纳为 \(son[x]->x->fa[x]\) 的情况 换根 \(dp\) 即可 点击查看代码 #include<bits/st…
[UOJ#82][UR #7]水题生成器(贪心) 题面 UOJ 题解 把\(n!\)的所有约数搜出来,这个个数不会很多. 然后从大往小能选则选就好了. #include<iostream> #include<cstdio> #include<algorithm> #include<vector> using namespace std; #define ll long long int n;ll m; vector<ll> ys; int p[2…
#33. [UR #2]树上GCD 有一棵$n$个结点的有根树$T$.结点编号为$1…n$,其中根结点为$1$. 树上每条边的长度为$1$.我们用$d(x,y)$表示结点$x,y$在树上的距离,$LCA(x,y)$表示$x,y$的最近公共祖先(即树中最深的既是$v$的祖先也是$u$的祖先的结点). 对于两个结点$u,v(u≠v)(u≠v)$,令$a=LCA(u,v)$,定义$f(u,v)=gcd(d(u,a),d(v,a))$. 其中$gcd(x,y)$表示$x,y$的最大公约数,特别地,$gc…
#118. [UR #8]赴京赶考 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/118 Description 高中,高中,短暂的三年.NOI是高中结业考试,而高考在每年暑假举行. 高二暑假,这是你最后一次参加高考的机会.你已经为了高考停课很久了,OI的知识很久没管了.你并没有能力用一年时间补起别人三年的OI课程.这是你的最后一战,如果你失败了,可能就不能工地搬砖只能去清华了. 这天你背上行囊赴京赶考.此时…
#31. [UR #2]猪猪侠再战括号序列 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/31 Description 大家好我是来自百度贴吧的_叫我猪猪侠,英文名叫_CallMeGGBond. 我不曾上过大学,但这不影响我对离散数学.复杂性分析等领域的兴趣:尤其是括号序列理论,一度令我沉浸其中,无法自拔.至于OI算法竞赛,我年轻时确有参加,虽仅获一枚铜牌,但我素性淡泊,毫不在意,毕竟那所谓FFT.仙人掌之类…
UOJ 241. [UR #16]破坏发射台 题意:长度为 n 的环,每个点染色,有 m 种颜色,要求相邻相对不能同色,求方案数.(定义两个点相对为去掉这两个点后环能被分成相同大小的两段) 只想到一个奇怪的线性递推,无法写成矩乘的形式... 正解用状态记录了颜色是否相同 奇环,只考虑相邻,确定第一个的颜色,\(f[i][0/1]\)表示i个与第一个不同/同色的方案数 偶环,再考虑相对,分成两段,同时递推\(i,\frac{n}{2}+i\),\(f[i][0..6]\)来表示 构造矩阵讨论好烦啊…
[UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\)推过来. 发现可以从\(sg[a][b]\)推到\(sg[a][b+1]\)的值很少,所以可以直接把这些值全部提前计算出来,这部分大概有\(\sqrt n\)个,剩下的可以推到\(sg[a+1][b]\)而不能推到\(sg[a][b+1]\)的位置可以通过\(a\)以及最大的满足\(x^b\le…
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个,其中\(c\in A\),且\(c\)个儿子是叶子,另外\(2\)个存在子树,且两种点的链接的边是不同的,求方案数. 那么就考虑一个暴力\(dp\),设\(f[i]\)表示有\(i\)个节点的树的个数. 那么枚举它两个有子树的子树大小,然后把编号给取出来,得到: \[f[i]=\frac{1}{2}…
[UOJ#242][UR#16]破坏蛋糕(计算几何) 题面 UOJ 题解 为了方便,我们假定最后一条直线是从上往下穿过来的,比如说把它当成坐标系的\(y\)轴. 于是我们可以处理出所有交点,然后把它们从上往下排序. 相邻的两个点就构成了一个相交的平面(可以认为正无穷和负无穷位置还有一个点) 那么,这个区间是有限的,当且仅当过这个两点的直线在左侧都还能找到一个交点,在右侧也还能找到一个交点. 于是考虑怎么找交点,两侧基本等价,所以拆开考虑,比如考虑右侧. 我们从上往下依次扫每一个过每一个交点的直线…
[UOJ#76][UR #6]懒癌(动态规划) 题面 UOJ 题解 神....神仙题. 先考虑如果是完全图怎么做... 因为是完全图,所以是对称的,所以我们只考虑一个有懒癌的人的心路历程. 如果只有一只狗有懒癌:第一天,看了看,似乎其他的狗都没有,但是村子里至少有一只狗有,然后就确定了. 如果有两只狗:第一天,看了看,有一只别的狗有懒癌,不确定:第二天,昨天有懒癌的那只狗还活着,证明他不能确定,所以他还看到了别的狗有懒癌,而除了自己的未知和那个有懒癌的人,别的人的狗都没有懒癌,所以自己的狗有懒癌…
[UOJ#75][UR #6]智商锁(矩阵树定理,随机) 题面 UOJ 题解 这种题我哪里做得来啊[惊恐],,, 题解做法:随机\(1000\)个点数为\(12\)的无向图,矩阵树定理算出它的生成树个数,然后找到四张图不拼接直接放在一起,也就是找到四个图,假设其生成树个数是\(f(G)\),那么就找到\(f(G_1)f(G_2)f(G_3)f(G_4)\equiv k\),然后预处理两两的乘积,丢到哈希表/\(\text{map}\)里,枚举另外一半直接查... 无向图的生成方式是每条边出现的概…
[UOJ#74][UR #6]破解密码 题面 UOJ 题解 发现这个过程是一个字符串哈希的过程. 把第一位单独拿出来考虑,假设这个串是\(p+S\),旋转后变成了\(S+p\). 其哈希值分别是:\(p*26^{|S|}+hash(S)\)和\(hash(S)*26+p\). 那么\(h[i]*26-h[i+1]=p*26^{n}-p\) 那么这里显然可以直接把\(p\)给解出来. 这样子就可以还原出每一位了. 注意到特殊情况:\(26^n-1\)没有逆,此时无法直接计算. 然而注意到\(26^…
[UOJ#62][UR #5]怎样跑得更快(莫比乌斯反演) 题面 UOJ 题解 众所周知,\(lcm(i,j)=\frac{ij}{gcd(i,j)}\),于是原式就变成了: \[\sum_{j=1}^n gcd(i,j)^{c-d}i^dj^dx_j\equiv b_i\] 于是我们就可以写成函数的形式: \[\sum_{j=1}^n f(gcd(i,j))h(i)h(j)x_j\equiv b_i\] 然后就开始枚举\(gcd\). \[\begin{aligned} b_i&=\sum_{…
[UOJ#61][UR #5]怎样更有力气(最小生成树) 题面 UOJ 题解 最最最暴力的想法是把所有边给处理出来然后跑\(MST\). 考虑边权的情况,显然离线考虑,把么一天按照\(w_i\)进行排序,显然在这一天的可以连的所有点中,我们能连则连. 考虑把这一天的所有的限制给弄出来(也就是弄出限制的子图). 如果限制的数量不超过这一天的\(dis(u,v)\),显然任意两点之间都是可以直接连边的,那么直接连起来就好了. 否则的话我们要找到一个复杂度和限制数量相关的东西来连边,并且因为两点长度小…
[UOJ#60][UR #5]怎样提高智商 题面 UOJ 题解 首先猜猜答案是\(4*3^{n-1}\).即前面的选啥都行,后面的搞搞就行了. 而打表(看题解),可以知道答案就是这个,并且每个问题都是询问\(A\)的个数,选项都是\(0\). 证明啥的不存在的. #include<iostream> #include<cstdio> using namespace std; #define MOD 998244353 int main() { int n;scanf("%…
[UOJ#49][UR #3]轴仓库 题面 UOJ 题解 不难发现一定是每次找到离当前位置最近的一个箱子,然后把它搬过来. 那么如果我们能够确定起始位置,我们就可以二分从两侧多少距离搬箱子,判断一下时间就好了. 考虑起始位置,发现一定可以让起始位置有箱子,因为这东西本质上就是一个中位数的模型. 考虑二分答案,于是我们要求的就变成了取\(mid\)个箱子所需的最短时间. 因为取走的箱子在数轴上一定是连续的一段,我们考虑从左往右枚举一个\(s\),那么当且仅当\(r+1\)比\(l\)更远时才不会进…
[UOJ#48][UR #3]核聚变反应强度(质因数分解) 题面 UOJ 题解 答案一定是\(gcd\)除掉\(gcd\)的最小质因子. 而\(gcd\)的最小值因子一定是\(a_1\)的质因子. 所以预处理出\(a_1\)的质因子,个数不会超过\(\log(a)\)个,然后就可以直接暴力了. 时间复杂度\(O(n\log(a)+\sqrt a)\) #include<iostream> #include<cstdio> #include<algorithm> usin…
[UOJ#33][UR #2]树上GCD(长链剖分,分块) 题面 UOJ 题解 首先不求恰好,改为求\(i\)的倍数的个数,最后容斥一下就可以解决了. 那么我们考虑枚举一个\(LCA\)位置,在其两棵不同的子树中选择两个点,那么贡献就是这两段的\(gcd\). 那么发现要统计的东西类似于\(u\)的子树中,深度为\(d\)的点的个数,这个可以很容易的用长链剖分来维护,那么维护出这个数组之后就可以\(O(\log {dep})\)的对于贡献进行计算.然而这个复杂度是假的,因为你每次都需要一次\(O…
[UOJ#32][UR #2]跳蚤公路(最短路) 题面 UOJ 题解 不难发现要求的就是是否存在负环.也就是我们只需要找到所有的负的简单环,很容易就可以想到维护路径上和\(x\)相关的内容,即维护一下\(u\)到\(v\)路径上,含有\(kx\)的路径的最小的\(b\).这个可以用\(Floyd\)在\(O(n^5)\)的复杂度中求解.这样子我们用\(f[u][u][k]\)就知道了一个包含了\(u\)的,且\(x\)系数为\(k\)的最小的环,求出其负环的值域范围,接着其能够到达的所有点都会收…
http://uoj.ac/problem/31 纪念伟大的没有调出来的splay... 竟然那个find那里写错了!!!!!!!!!!!!! 以后要记住:一定要好好想过! (正解的话我就不写了,太简单了.. #include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #…