1.测试数据下载 https://datamarket.com/data/set/22w6/portland-oregon-average-monthly-bus-ridership-100-january-1973-through-june-1982-n114#!ds=22w6&display=line 2.LSTM预测 import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime…
博主之前参与的一个科研项目是用 LSTM 结合 Attention 机制依据作物生长期内气象环境因素预测作物产量.本篇博客将介绍如何用 keras 深度学习的框架搭建 LSTM 模型对时间序列做预测.所用项目和数据集来自:真实业界数据的时间序列预测挑战. 1 项目简单介绍 1.1 背景介绍 本项目的目标是建立内部与外部特征结合的多时序协同预测系统.数据集采用来自业界多组相关时间序列(约40组)与外部特征时间序列(约5组).课题通过进行数据探索,特征工程,传统时序模型探索,机器学习模型探索,深度学…
https://blog.csdn.net/flying_sfeng/article/details/78852816 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Flying_sfeng/article/details/78852816 这篇文章将讲解如何使用lstm进行时间序列方面的预测,重点讲lstm的应用,原理部分可参考以下两篇文章: Understanding LSTM Networks       LSTM学习笔记 编程环境:py…
目录 基于 Keras 用 LSTM 网络做时间序列预测 问题描述 长短记忆网络 LSTM 网络回归 LSTM 网络回归结合窗口法 基于时间步的 LSTM 网络回归 在批量训练之间保持 LSTM 的记忆 在批量训练中堆叠 LSTM 网络 总结 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras 原文使用 python 实现模型…
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完成任务,若你对RNN及LSTM不甚了解,请移步上一篇数据科学学习手札39; 二.数据说明及预处理 2.1 数据说明 我们本文使用到的第一个数据来自R中自带的数据集AirPassengers,这个数据集记录了Box & Jenkins航空公司1949-1960年共144个观测值(对应每个月的国际航线乘…
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n…
常常会碰到各种各样时间序列预测问题,如商场人流量的预测.商品价格的预测.股价的预测,等等.TensorFlow新引入了一个TensorFlow Time Series库(以下简称为TFTS),它可以帮助在TensorFlow中快速搭建高性能的时间序列预测系统,并提供包括AR.LSTM在内的多个模型. 时间序列问题 一般而言,时间序列数据抽象为两部分:观察的时间点和观察的值(以商品价格为例,某年一月的价格为120元,二月的价格为130元,三月的价格为135元,四月的价格为132元.那么观察的时间点…
#时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. #时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN).相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计算结果都与当前输入以及上一次的隐含层结果相关.通过这种方法,RNN…
简单使用 代码如下 这是官网的quickstart的内容,csv文件也可以下到,这个入门以后后面调试加入其它参数就很简单了. import pandas as pd import numpy as np from fbprophet import Prophet import matplotlib.pyplot as plt df = pd.read_csv('prophet2.csv') df['y'] = np.log(df['y']) df.head() m = Prophet() m.f…
tensoboard 导入:导入包注意 否者会报错 :keras FailedPreconditionError: Attempting to use uninitialized value training/Adam/Variable_9 参考 https://stackoverflow.com/questions/53965588/including-tensorboard-as-a-callback-in-keras-model-fitting-causes-a-failedprecon…
利用时间序列预测方法,我们可以基于历史的情况来预测未来的情况.比如共享单车每日租车数,食堂每日就餐人数等等,都是基于各自历史的情况来预测的. 什么是时间序列? 时间序列,是指同一个变量在连续且固定的时间间隔上的各个数据点的集合,比如每5分钟记录的收费口车流量,或者每年记录的药物销量都是时间序列. 时间序列的类型 根据时间间隔的不同,时间序列可以是按年度(Annual).季度.月度.周.小时.分钟.秒等频率采集的序列. 时间序列的成分 趋势(Trend),比如长期上涨或长期下跌. 季节性(Seas…
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层:   在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选项(针对密集连接的神经网络):…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
TensorFlow Keras API用法 Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,可以编译和拟合模型,可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层: 在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选…
常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括TensorFlow,Keras,MXNet,PyTorch,CNTK,Theano,Caffe,DeepLearning4,Lasagne,Neon,等等.Google,Microsoft等商业巨头都加入了这场深度学习框架大战,当下最主流的框架当属TensorFlow,Keras,MXNet,PyTorch…
什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型. 1. ARIMA的优缺点 优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量. 缺点: 1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)…
tips: Keras是一个高层神经网络API(高层意味着会引用封装好的的底层) Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端. 故先安装TensorFlow,后安装Keras 为简化环境配置,在anaconda的助攻下安装 PS:直接cmd里pip Keras似乎是行不通的...没尝试... 参考:知乎专栏:[深度学习] Anaconda下TensorFlow + Keras配置指南 简单目录: 安装TensorFlow 安装Keras 安装Tens…
作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutorial-for-tensorflow-keras-and-pytorch/ Checkpointing Tutorial for TensorFlow, Keras, and PyTorch This post will demonstrate how to checkpoint your trai…
tensorflow TensorFlow is an open-source machine learning library for research and production. https://en.wikipedia.org/wiki/TensorFlow https://www.tensorflow.org/ Tutorial: https://www.tensorflow.org/tutorials/ Keras: Keras is a high-level API to bui…
学习Tensorflow的LSTM的RNN例子 基于TensorFlow一次简单的RNN实现 极客学院-递归神经网络 如何使用TensorFlow构建.训练和改进循环神经网络…
其实我一直都在想,搞算法的不仅仅是服务,我们更是要在一个平台上去实现服务,因此,在工业领域,板子是很重要的,它承载着无限的机遇和挑战,当然,我并不是特别懂一些底层的东西,但是这篇博客希望可以帮助有需要的人. 首先我们回到原点,就是jetpack 3.3刷完机后,现在要装tensorflow和keras.自然的,我们可以想到,需要 miniconda或anaconda cuda和cudnn tensorflow keras 其实jetpack3.3里面已经有了python2和cuda9.0,cud…
[开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误.以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务. 首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GP…
windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速 原文见于:http://www.jianshu.com/p/c245d46d43f0 作者 xushiluo 关注 2016.12.21 20:32* 字数 3096 阅读 12108评论 18喜欢 19 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 中加入初步的 Windows 支持.但是目前只支持64位,而且Py…
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等. TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机…
100天搞定机器学习|1-38天 100天搞定机器学习|day39 Tensorflow Keras手写数字识别 前文我们用keras的Sequential 模型实现mnist手写数字识别,准确率0.9713.今天我们完成day40-42的课程,实现猫.狗的识别. 本文数据集下载地址 https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.…
本文链接:https://blog.csdn.net/weixin_44290661/article/details/1026789071. 安装tensorflow keras tensorflow_federated详细步骤因为tensorflow很多依赖及版本兼容性问题,卸载麻烦,所以我是新建一个conda虚拟环境,专门用来运行tensorflow相关程序,这样tensorflow有问题的话,也不会影响到其他的python环境. 打开Anaconda Prompt,输入以下命令行. 创建名…
目录 Q: where is Sequential defined? Q: where is compile()? tensorflow keras analysis code from keras.models import Sequential model = Sequential() from keras.layers import Dense model.add(Dense(units=64, activation='relu', input_dim=100)) model.add(De…
注意!注意!!注意!!! (重要的事情说三遍) 安装前检查: 1.Tensorflow不支持Anaconda2,Tensorflow也不支持python2.7和python3.7(满满的辛酸泪!) 2.Tensorflow版本和Keras版本越高越好,避免各种Bug 安装过程出现的Bug: 1.报错提示:"from pip._internal.main import main ModuleNotFoundError: No module named 'pip._internal.main&quo…
这个bug的解决办法: # from tensorflow.keras import datasets, layers, models from tensorflow.python.keras import datasets, layers, models 在tensorflow和Keras中间插入python,可能是因为tensorflow版本问题(我的版本是1.7.0),Keras的目录是   ~\tensorflow\python\keras,而非 ~\tensorflow\keras…
Ubuntu16.04深度学习基本环境搭建,tensorflow , keras , pytorch , cuda Ubuntu16.04安装 参考https://blog.csdn.net/flyyufenfei/article/details/79187656 安装nvidia驱动 sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update 选择安装驱动 ubuntu-drivers devices 查看自己显卡对应的驱动…