CNN -- Simple Residual Network】的更多相关文章

基于深度残差网络的JPEG图像超分辨率 JPEG Image Super-Resolution via Deep Residual Network PDF https://www.researchgate.net/publication/326203235_JPEG_Image_Super-Resolution_via_Deep_Residual_Network   在许多实际场景中,要获得超分辨率的图像不仅具有低分辨率(LR),而且还具有JPEG压缩特性,而现有的大多数超分辨率方法都采用无压缩…
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的.在感受野的基础上,1980年Fukushima提出了一个理论模型Neocognitron是感受野在人工神经网络领域的首次应用.1998年,Lecun等人提出的LeNet-5模型在手写字符识别上取得了成功,引起了学术界对卷积神经网络的关注.2012年…
一.背景 1)梯度消失问题 我们发现很深的网络层,由于参数初始化一般更靠近0,这样在训练的过程中更新浅层网络的参数时,很容易随着网络的深入而导致梯度消失,浅层的参数无法更新. 可以看到,假设现在需要更新b1,w2,w3,w4参数因为随机初始化偏向于0,通过链式求导我们会发现,w1w2w3相乘会得到更加接近于0的数,那么所求的这个b1的梯度就接近于0,也就产生了梯度消失的现象. 2)网络退化问题 举个例子,假设已经有了一个最优化的网络结构,是18层.当我们设计网络结构的时候,我们并不知道具体多少层…
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化). 甚至在一些场景下,网络层数的增加反而会降低正确率.这种本质问题是由于出现了信息丢失而产生的过拟合问题(overfitting,所建的机器学习模型或者是深度学习模型在训练样本中表现的过于优越,导致在验证数据集及测试数据集中表现不佳,即为了得到一致假设而使假设变得过度复杂).解决思路是尝试着使他们引入这些刺…
参考第一个回答:如何评价DeepMind最新提出的RelationNetWork 参考链接:Relation Network笔记  ,暂时还没有应用到场景中 LiFeifei阿姨的课程:CV与ML课程在线 论文:A simple neural network module for relational reasoning github代码: https://github.com/siddk/relation-network 摘抄一段: Visual reasoning是个非常重要的问题,由于Re…
参考, An Intuitive Explanation of Convolutional Neural Networks http://www.hackcv.com/index.php/archives/104/?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io CNN基础 CNN网络主要用于compute vision 对于图片输入而言,是一种极高维度的数据,比如分辨率1000*1000*3的图,可能会产生3 bil…
详解卷积神经网络(CNN) 详解卷积神经网络CNN 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全连接层Fully-connected layer 卷积神经网络架构 Layer Patterns Layer Sizing Patterns Case Studies 参考 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一…
这是一篇水货写的笔记,希望路过的大牛可以指出其中的错误,带蒟蒻飞啊~ 一.    梯度消失/梯度爆炸的问题 首先来说说梯度消失问题产生的原因吧,虽然是已经被各大牛说烂的东西.不如先看一个简单的网络结构, 可以看到,如果输出层的值仅是输入层的值与权值矩阵W的线性组合,那么最终网络最终的输出会变成输入数据的线性组合.这样很明显没有办法模拟出非线性的情况.记得神经网络是可以拟合任意函数的.好了,既然需要非线性函数,那干脆加上非线性变换就好了.一般会使用sigmoid函数,得到,这个函数会把数据压缩到开…
卷积神经网络(CNN)解析: 卷积神经网络CNN解析 概揽 Layers used to build ConvNets 卷积层Convolutional layer 池化层Pooling Layer 全连接层Fully-connected layer 卷积神经网络架构 Layer Patterns Layer Sizing Patterns Case Studies 参考 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应…