Netty源码分析之ByteBuf引用计数】的更多相关文章

引用计数是一种常用的内存管理机制,是指将资源的被引用次数保存起来,当被引用次数变为零时就将其释放的过程.Netty在4.x版本开始使用引用计数机制进行部分对象的管理,其实现思路并不是特别复杂,它主要涉及跟踪某个对象被引用的次数.在Netty具体代码中需要通过引用计数进行内存管理的对象,会基于ReferenceCounted接口实现,其中引用计数大于0时则代表该对象被引用不会释放,当引用计数减少到0时,该对象就会被释放.通过引用计数机制,Netty可以很好的实现内存管理,引用计数减少到0时要么直接…
每种ByteBuf都有相应的分配器ByteBufAllocator,类似工厂模式.我们先学习UnpooledHeapByteBuf与其对应的分配器UnpooledByteBufAllocator 如何知道alloc分配器那是个? 可以从官方下载的TimeServer 例子来学习,本项目已有源码可在 TestChannelHandler.class里断点追踪 从图可以看出netty 4.1.8默认的ByteBufAllocator是PooledByteBufAllocator,可以参过启动参数-D…
因为jdk ByteBuffer使用起来很麻烦,所以netty研发出ByteBuf对象维护管理内存使用ByteBuf有几个概念需要知道1.向ByteBuf提取数据时readerIndex记录最后读取坐标,目的是下次从readerIndex开始读2.向ByteBuf写入数据时writerIndex记录最后写数据坐标3.提取数据范围是readerIndex<=writerIndex,因为先写入数据然后才能读取数据4.自动扩容,当writerIndex达到一定阀值时,会扩大capacity 所以Byt…
Netty中的内存分配是基于ByteBufAllocator这个接口实现的,通过对它的具体实现,可以用来分配我们之前描述过的任意类型的BytebBuf实例:我们先看一下ByteBufAllocator接口中的定义的关键方法 一.ByteBufAllocator 构造 public interface ByteBufAllocator { ByteBufAllocator DEFAULT = ByteBufUtil.DEFAULT_ALLOCATOR; //根据具体实现返回基于直接内存或堆内内存的…
public class CompositeByteBuf extends AbstractReferenceCountedByteBuf implements Iterable<ByteBuf> { private final ByteBufAllocator alloc; private final boolean direct; //组合内容 private final List<Component> components; //内部类Component,指针记录 priva…
ByteBuf是Netty中主要的数据容器与操作工具,也是Netty内存管理优化的具体实现,本章我们先从整体上对ByteBuf进行一个概述: AbstractByteBuf是整个ByteBuf的框架类,定义了各种重要的标志位与API供具体的实现类使用与实现:下面我们就从AbstractByteBuf类入手对ByteBuf的读写机制与API进行一个简单的介绍 private static final InternalLogger logger = InternalLoggerFactory.get…
public class UnpooledDirectByteBuf extends AbstractReferenceCountedByteBuf { private final ByteBufAllocator alloc; //jdk ByteBuffer管理直接内存 private ByteBuffer buffer; private int capacity; @Override public boolean hasArray() { return false; } @Override…
Netty源码分析第五章: ByteBuf 第五节: directArena分配缓冲区概述 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这一小节简单分析下directArena分配缓冲区的相关过程 回到newDirectBuffer中: protected ByteBuf newDirectBuffer(int initialCapacity, int maxCapacity) { PoolThreadCache cache = th…
Netty源码分析第6章: ByteBuf 第六节: 命中缓存的分配 上一小节简单分析了directArena内存分配大概流程, 知道其先命中缓存, 如果命中不到, 则区分配一款连续内存, 这一小节带大家剖析命中缓存的相关逻辑 分析先关逻辑之前, 首先介绍缓存对象的数据结构 回顾上一小节的内容, 我们讲到PoolThreadCache中维护了三个缓存数组(实际上是六个, 这里仅仅以Direct为例, heap类型的逻辑是一样的): tinySubPageDirectCaches, smallSu…
Netty源码分析第五章: ByteBuf 第九节: ByteBuf回收 之前的章节我们提到过, 堆外内存是不受jvm垃圾回收机制控制的, 所以我们分配一块堆外内存进行ByteBuf操作时, 使用完毕要对对象进行回收, 这一小节, 就以PooledUnsafeDirectByteBuf为例讲解有关内存分配的相关逻辑 PooledUnsafeDirectByteBuf中内存释放的入口方法是其父类AbstractReferenceCountedByteBuf中的release方法: @Overrid…
Netty源码分析第五章: ByteBuf 概述: 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, 将channel中的数据读取到字节缓冲区, 当要往对方写数据的时候, 将字节缓冲区的数据写到channel中 但是jdk的byteBuffer是使用起来有诸多不便, 比如只有一个标记位置的指针position, 在进行读写操作时要频繁的通过flip()方法进行指针位置的移动, 极易出错, 并且by…
Netty源码分析第五章: ByteBuf 第二节: ByteBuf的分类 上一小节简单介绍了AbstractByteBuf这个抽象类, 这一小节对其子类的分类做一个简单的介绍 ByteBuf根据不同的分类方式, 会有不同的分类结果 我们首先看第一种分类方式: 1.Pooled和Unpooled: pooled是从一块内存里去取一段连续内存封装成byteBuf 具体标志是类名以Pooled开头的ByteBuf, 通常就是Pooled类型的ByteBuf, 比如: PooledDirectByte…
Netty源码分析第五章: ByteBuf 第三节: 缓冲区分配器 缓冲区分配器, 顾明思议就是分配缓冲区的工具, 在netty中, 缓冲区分配器的顶级抽象是接口ByteBufAllocator, 里面定义了有关缓冲区分配的相关api 抽象类AbstractByteBufAllocator实现了ByteBufAllocator接口, 并且实现了其大部分功能 和AbstractByteBuf一样, AbstractByteBufAllocator也实现了缓冲区分配的骨架逻辑, 剩余的交给其子类 以…
Netty源码分析第五章: ByteBuf 第四节: PooledByteBufAllocator简述 上一小节简单介绍了ByteBufAllocator以及其子类UnPooledByteBufAllocator的缓冲区分类的逻辑, 这一小节开始带大家剖析更为复杂的PooledByteBufAllocator, 我们知道PooledByteBufAllocator是通过自己取一块连续的内存进行ByteBuf的封装, 所以这里更为复杂, 在这一小节简单讲解有关PooledByteBufAlloca…
Netty源码分析第五章: ByteBuf 第六节: page级别的内存分配 前面小节我们剖析过命中缓存的内存分配逻辑, 前提是如果缓存中有数据, 那么缓存中没有数据, netty是如何开辟一块内存进行内存分配的呢?这一小节带大家进行剖析: 剖析之前首先简单介绍netty内存分配的大概数据结构: 之前我们介绍过, netty内存分配的单位是chunk, 一个chunk的大小是16MB, 实际上每个chunk, 都以双向链表的形式保存在一个chunkList中, 而多个chunkList, 同样也…
Netty源码分析第五章: ByteBuf 第八节: subPage级别的内存分配 上一小节我们剖析了page级别的内存分配逻辑, 这一小节带大家剖析有关subPage级别的内存分配 通过之前的学习我们知道, 如果我们分配一个缓冲区大小远小于page, 则直接在一个page上进行分配则会造成内存浪费, 所以需要将page继续进行切分成多个子块进行分配, 子块分配的个数根据你要分配的缓冲区大小而定, 比如只需要分配1k的内存, 就会将一个page分成8等分 简单起见, 我们这里仅仅以16字节为例,…
Netty源码分析第五章: ByteBuf 第十节: SocketChannel读取数据过程 我们第三章分析过客户端接入的流程, 这一小节带大家剖析客户端发送数据, Server读取数据的流程: 首先温馨提示, 这一小节高度耦合第三章的第1, 2节的内容, 很多知识这里并不会重复讲解, 如果对之前的知识印象不深刻建议恶补第三章的第1, 2节的内容之后再学习这一小节 我们首先看NioEventLoop的processSelectedKey方法: private void processSelect…
Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小节的read()方法: public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel的config final ChannelConfig config = config(); //服务端channel的pipeline final ChannelPi…
Netty源码分析第四章: pipeline 第七节: 前章节内容回顾 我们在第一章和第三章中, 遗留了很多有关事件传输的相关逻辑, 这里带大家一一回顾 首先看两个问题: 1.在客户端接入的时候, NioMessageUnsafe的read方法中pipeline.fireChannelRead(readBuf.get(i))为什么会调用到ServerBootstrap的内部类ServerBootstrapAcceptor中的channelRead()方法 2.客户端handler是什么时候被添加…
前言 上一篇文章,我们对 Netty做了一个基本的概述,知道什么是Netty以及Netty的简单应用. Netty 源码分析系列(一)Netty 概述 本篇文章我们就来说说Netty的架构设计,解密高并发之道.学习一个框架之前,我们首先要弄懂它的设计原理,然后再进行深层次的分析. 接下来我们从三个方面来分析 Netty 的架构设计. Selector 模型 Java NIO 是基于 Selector 模型来实现非阻塞的 I/O.Netty 底层是基于 Java NIO 实现的,因此也使用了 Se…
前面两篇博客[Netty源码分析]Netty服务端bind端口过程和[Netty源码分析]客户端connect服务端过程中我们分别介绍了服务端绑定端口和客户端连接到服务端的过程,接下来我们分析一下数据发送的过程. future.channel().writeAndFlush("Hello Netty Server ,I am a common client"); 调用AbstractChannel的writeAndFlush函数 @Override public ChannelFutu…
如果你对netty的reactor线程不了解,建议先看下上一篇文章netty源码分析之揭开reactor线程的面纱(一),这里再把reactor中的三个步骤的图贴一下 reactor线程 我们已经了解到netty reactor线程的第一步是轮询出注册在selector上面的IO事件(select),那么接下来就要处理这些IO事件(process selected keys),本篇文章我们将一起来探讨netty处理IO事件的细节 我们进入到reactor线程的 run 方法,找到处理IO事件的代…
Netty源码分析(完整版) 前言 前段时间公司准备改造redis的客户端, 原生的客户端是阻塞式链接, 并且链接池初始化的链接数并不高, 高并发场景会有获取不到连接的尴尬, 所以考虑了用netty长连接解决连接数和阻塞io问题 为此详细阅读了netty源码, 熟悉了netty的各个主要的特性以及疏通各个组件的关联关系, 所以想把这段时间的学习内容, 学习经验毫无保留的分享给大家, 自己提高的同时也帮助大家一起成长 内容中我会把每个知识点通过每个章节去进行剖析, 每个章节也会尽可能的将关键的流程…
Netty源码分析第二章: NioEventLoop   第七节:处理IO事件 上一小节我们了解了执行select()操作的相关逻辑, 这一小节我们继续学习select()之后, 轮询到io事件的相关逻辑: 回到NioEventLoop的run()方法: protected void run() { for (;;) { try { switch (selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())) { case Se…
Netty源码分析第三章: 客户端接入流程 概述: 之前的章节学习了server启动以及eventLoop相关的逻辑, eventLoop轮询到客户端接入事件之后是如何处理的?这一章我们循序渐进, 带大家继续剖析客户端接入之后的相关逻辑 第一节:初始化NioSockectChannelConfig 在剖析接入流程之前我们首先补充下第一章有关创建channel的知识: 我们在第一章剖析过channel的创建, 其中NioServerSocketChannel中有个构造方法: public NioS…
Netty源码分析第三章: 客户端接入流程 第二节: 处理接入事件之handle的创建 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端连接事件的处理 回到上一章NioEventLoop的processSelectedKey ()方法: private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { //获取到channel中的unsafe final…
Netty源码分析第三章: 客户端接入流程 第四节: NioSocketChannel注册到selector 我们回到最初的NioMessageUnsafe的read()方法: public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel的config final ChannelConfig config = config(); //服务端channel…
Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是如何处理这类问题的, 在这一章中, 会对此做详细剖析 之前的章节我们学习过pipeline, 事件在pipeline中传递, handler可以将事件截取并对其处理, 而之后剖析的编解码器, 其实就是一个handler, 截取byteBuf中的字节, 然后组建成业务需要的数据进行继续传播 编码器,…
Netty源码分析第六章: 解码器 第二节: 固定长度解码器 上一小节我们了解到, 解码器需要继承ByteToMessageDecoder, 并重写decode方法, 将解析出来的对象放入集合中集合, ByteToMessageDecoder中可以将解析出来的对象向下进行传播, 这一小节带大家剖析一个最简单的解码器FixedLengthFrameDecoder, 从它入手了解码器的相关原理 FixedLengthFrameDecoder是一个固定长度的解码器, 功能就是根据固定长度, 截取固定大…
Netty源码分析第六章: 解码器 第三节: 行解码器 这一小节了解下行解码器LineBasedFrameDecoder, 行解码器的功能是一个字节流, 以\r\n或者直接以\n结尾进行解码, 也就是以换行符为分隔进行解析 同样, 这个解码器也继承了ByteToMessageDecoder 首先看其参数: //数据包的最大长度, 超过该长度会进行丢弃模式 private final int maxLength; //超出最大长度是否要抛出异常 private final boolean fail…