题目来源:洛谷P1541 思路 类似背包的题 总之就是四种卡牌取的先后顺序不同导致的最终ans不同 所以我们用一个四维数组每一维分别表示第几种取了几张的最大分数 然后就是简单DP解决 代码 #include<iostream> using namespace std; #define maxn 355 int n,m,ans; ],point[maxn]; ][][][]; int main() { cin>>n>>m; ;i<=n;i++) cin>>…
四维dp #include<cstdio> #include<cstring> using namespace std; ; ],a,b,c,d,n,m; int max(int x,int y){ return x>y?x:y; } int main(){ int tmp; a=b=c=d=; scanf("%d %d",&n,&m); ;i<=n;i++) scanf("%d",&g[i]); ;i&l…
次元传送门:洛谷P1514 思路 可以证明如果有解 那么每个蓄水池可以覆盖到的干旱区必定是线段 证明: 举个栗子 8 9 8 7 9 7 6 9 6 明显到不了中间的点 如果不是连续的线段 中间肯定有一个点到不了 无解 那么我们就可以从每个开头城市进行DFS 并且同时递归计算每个点可以到达的最左边和最右边 最后进行一个线段覆盖问题解决 注意最左边是取最小值 最右边是取最大值 代码 #include<iostream> #include<cstring> #include<qu…
洛谷题目链接:乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点. 乌龟棋中M张爬行卡片,分成4种不同的类型(M张卡片中不一定包含所有4种类型的卡片,见样例),每种类型的卡片上分别标有1.2.3.4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数.游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬…
洛谷 p1541乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行NN个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第NN格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点. 乌龟棋中MM张爬行卡片,分成4种不同的类型(MM张卡片中不一定包含所有44种类型的卡片,见样例),每种类型的卡片上分别标有1,2,3,41,2,3,4四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数.游戏中,玩家每次需要从所有的爬行卡片中…
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(dp[x][i]\)表示在节点\(x\)保留\(i\)个边所获得的最大苹果数,定义状态时一定要选对状态并且定义清晰(状态中包括了当前节点吗?目标状态是怎样的?).一开始我就是因为状态定义错误,所以卡了半天,之后重新定义状态后几分钟就切了这道题. 然后是普通的树上背包状态转移 \[ dp[x][i]=m…
洛谷 P1273 有线电视网(树形背包) 干透一道题 题面:洛谷 P1273 本质就是个背包.这道题dp有点奇怪,最终答案并不是dp值,而是最后遍历寻找那个合法且最优的\(i\)作为答案.dp值存的是当前状态下的成本,所以合法情况即当成本值大于等于0,不亏本的时候. 因为dp维护的是成本,并且按照背包思想,存在让这个用户接入和不让这个用户接入两种决策,类比背包,所以状态转移方程容易得到原始方程: \[ dp[s][i][j]=max \{ dp[s][i-1][j-k]+dp[w][size_w…
洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一个值发生变化.现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可. 输入格式 输入的第一行有两个正整数 \(n,m\),分别表示序列的长度和变化的个数. 接下来一行有 \…
洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置,设为 \(j\),那么有转移 \[dp_i=\min\limits_{j}\{\max(dp_j+i-j-1,a_i)+2s+i-j-1\} \] 在这里我们不妨假设 \(a_i<a_{i+1}\),这个可以通过从左到右扫一遍并执行 \(a_i\leftarrow\max(a_{i-1}+1,a_…
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ll long long using namespace std; ll num[+]; ll p[]; ll f[][][][]; int main() { ios::sync_with_stdio(false); ll n,m;//n格子数,m牌数 cin>>n>>m; ;i<…