模糊聚类算法(FCM)】的更多相关文章

伴随着模糊集理论的形成.发展和深化,RusPini率先提出模糊划分的概念.以此为起点和基础,模糊聚类理论和方法迅速蓬勃发展起来.针对不同的应用,人们提出了很多模糊聚类算法,比较典型的有基于相似性关系和模糊关系的方法.基于模糊等价关系的传递闭包方法.基于模糊图论的最大支撑树方法,以及基于数据集的凸分解.动态规划和难以辨别关系等方法.然而,上述方法均不能适用于大数据量的情况,难以满足实时性要求较高的场合,因此实际应用并不广泛. 模糊聚类分析按照聚类过程的不同大致可以分为三大类: (1)基于模糊关系的…
前言:这几天一直都在研究模糊聚类.感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类. 一:模糊数学 我们大家都知道计算机其实只认识两个数字0,1.我们平时写程序其实也是这样if 1 then do.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(1表示),一个女人(0表示),但是随着科学技术的发展,出现了人妖这个生物(可能0.3属于男…
不管是实验室研究机器学习算法或是公司研发,都有需要自己改进算法的时候,下面就说说怎么在weka里增加改进的机器学习算法. 一 添加分类算法的流程 1 编写的分类器必须继承 Classifier或是Classifier的子类:下面用比较简单的zeroR举例说明: 2 复写接口 buildClassifier,其是主要的方法之一,功能是构造分类器,训练模型: 3 复写接口 classifyInstance,功能是预测一个标签的概率:或实现distributeForInstance,功能是对得到所有的…
FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小.模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分.在介绍FCM具体算法之前我们先介绍一些模糊集合的基本知识. 1 模糊集基本知识 首先说明隶属度函数的概念.隶属度函数是表示一个对象x隶属于集合A的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是[0,1],即0<=…
1965年美国加州大学柏克莱分校的扎德教授第一次提出了'集合'的概念.经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面.为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析.用模糊数学的方法进行聚类分析,就是模糊聚类分析.FCM(Fuzzy C-Means)算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法.该聚类算法是传统硬聚类算法的一种改进. 算法流程: 标准化数据矩阵: 建立模糊相似矩阵,初始化隶属矩阵: 算法开始迭代,直到目标函数收敛到极小值: 根据迭代结果,…
摘自:http://ramsey16.net/%E8%81%9A%E7%B1%BB%EF%BC%88%E4%B8%89%EF%BC%89fuzzy-c-means/ 经典k-均值聚类算法的每一步迭代中,每一个样本点都被认为是完全属于某一类别.我们可以放松这个条件,假定每个样本xjxj模糊“隶属”于某一类的. 硬聚类把每个待识别的对象严格的划分某类中,具有非此即彼的性质:模糊聚类建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流. 例1.一个一维的例子来说,给定一个特定数…
网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免过度分割以及锯齿形分割边界.算法的核心思想是先利用模糊聚类的方法分割几何模型,并保留分割边界附近的模糊区域,然后利用最小割的方法在模糊区域里寻找准确的分割边界.算法主要包含以下4个步骤: 1. 计算网格中所有相邻面片之间的距离: 2. 计算每个面片属于不同分割区域的概率: 3. 迭代调整每个面片的概…
网格分割算法是三维几何处理算法中的重要算法,具有许多实际应用.[Katz et al. 2003]提出了一种新型的层次化网格分割算法,该算法能够将几何模型沿着凹形区域分割成不同的几何部分,并且可以避免过度分割以及锯齿形分割边界.算法的核心思想是先利用模糊聚类的方法分割几何模型,并保留分割边界附近的模糊区域,然后利用最小割的方法在模糊区域里寻找准确的分割边界.算法主要包含以下4个步骤: 1. 计算网格中所有相邻面片之间的距离: 2. 计算每个面片属于不同分割区域的概率: 3. 迭代调整每个面片的概…
基于划分方法聚类算法R包: K-均值聚类(K-means)                   stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids)               cluster::pam() .fpc::pamk() 层次聚类                                stats::hclust().BIRCH.CURE 密度聚类                                fpc::DBS…
聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研究.客户分割.Web文档分类等. 聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大.即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离.一个好的聚类方法将产生如下的聚类 :1).最大化…